Targeted delivery of immune therapeutics to lymph nodes prolongs cardiac allograft survival

Baharak Bahmani¹⁺, Mayuko Uehara¹⁺, Liwei Jiang¹, Farideh Ordikhani¹, Naima Banouni¹, Takaharu Ichimura², Zhabiz Solhjou¹, Georg J. Furtmüller³, Gerald Brandacher³, David Alvarez⁴, Ulrich H. von Andrian⁴, Kenji Uchimura⁵, Qiaobing Xu⁶, Ishaan Vohra¹, Osman A. Yilmam^{1,} Yousef Haik⁷, Jamil Azzi¹, Vivek Kasinath¹, Jonathan Bromberg⁸, Martina M. McGrath¹ and Reza Abdi^{1*}

¹Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA

²Renal Division, Brigham and Women's Hospital, Harvard Medical School,

Boston, MA 02115, USA

³Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

⁴Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA

⁵Unite de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Universite de Lille 1,

59655 Villeneuve d'Ascq, France

⁶Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02115, USA

⁷College of Science and Engineering, Hamad bin Khalifa University, Doha, Qatar ⁸Department of Surgery and Microbiology and Immunobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA

[†]These authors contributed equally to this work.

*Address correspondence to:

Reza Abdi, MD

Transplantation Research Center, Brigham and Women's Hospital

221 Longwood Ave, Boston MA 02116, USA

Tel: 617-732-5259, Fax: 617-732-5254, Email: rabdi@rics.bwh.harvard.edu

Supplementary Data

Supplementary Figure 1:

(A) Immunofluorescence staining of HEV in naïve LN vs. DLN (upper panel), iDISCO HEV imaging in the naïve LN vs. DLN (lower panel). (B) Quantification of the HEV in naïve LN vs DLN using ImageJ software (n=4-7/group, 9 sections per each LN per mouse, student *t*-test, ***p < 0.001). (C) Color Doppler echography of DLN showed markedly increased blood supply (62.9 ml/s) following transplantation, as compared to naïve LN (2.9 ml/s).

Supplementary Figure 2:

(A) Immunofluorescence staining of DLN at 24 hours post-IV administration of IgM-IR800-NPs reveals minimal accumulation of NPs. (B) Fluorescent image of IR800-NPs (red) endocytosed by a DC *in vitro*.

Supplementary Figure 3:

(A) T cell proliferation assay comparing level of proliferation following treatment with free anti-CD3 (10µg) and anti-CD3-NPs (10µg). The bar graph represents the percentage of T cell proliferation in comparison to the negative control (no stimulation) (free anti-CD3 and anti-CD3-NP vs negative control, student *t*-test, ***p<0.001, n=3 mice/group). (B) Luminex assay of supernatant of DLN T cells stimulated with irradiated donor cells showed significantly lower production of IFN γ , TNF α and IL-6 following treatment with free anti-CD3 or MECA79-anti-CD3-NP as compared to untreated control group. No differences observed between the two treated groups. (ANOVA test). (C) Histological examination of heart allografts treated with MECA79-anti-CD3-NPs showed myocyte necrosis, fibrosis, and cellular infiltration (H&E) at 125 days post-transplantation.

Supplementary Figure 4:

(A) BALB/c hearts were transplanted into C57BL/6 recipients, treated with either MECA79-anti-CD3-NPs or free anti-CD3. DLNs were harvested at 17 days post-transplantation. Bar graphs represent the number of CD3⁺ cells, the percentage of CD4⁺ CD69⁺, CD4⁺ CD44⁺ CD62L^{low} T cells, Tregs and IFN γ -producing CD4⁺ T cells in the DLN (free anti-CD3 vs. MECA79-anti-CD3-NP, 14.6±2.6 vs. 15.6±1.8%, mean ± SEM, student *t*-test, *p*=ns for CD4⁺ CD44⁺ CD62L^{low} cells, 12.4±1.9 vs. 12.1±1.1, mean ± SEM, student *t*-test, *p*=ns for Tregs, and 4.5±0.9 vs. 3.2±0.3%, mean ± SEM, student *t*-test, *p*=ns for IFN γ -producing CD4⁺ cells, n=4 mice/group). (B) Plasma cytokine measurement shows higher levels of IFN γ and IL-2 in the anti-CD3-NPtreated mice, as compared to MECA79-anti-CD3-NP (control vs. free anti-CD3 vs. MECA79anti-CD3-NP, 3.5±0.4 vs. 304.7±54.7 vs. 112.8±31.5 x10⁴ for IFN γ , 3.7±0.9 vs. 70.5±16.5 vs. 24.5±4.2 for IL-2, mean ± SEM, ANOVA test, **p*<0.05, ***p*<0.01, ****p*<0.001, *****p*<0.0001, n=4 mice/group.

Naive LN DLN

С

MECA79-anti-CD3-NPs

С

Α

Free anti-CD3
MECA79-anti-CD3-NP

