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Two-photonmicroscopy has substantially advanced our understand-
ing of cellular dynamics in the immune system. Cell migration can
now be imaged in real time in the living animal. Strikingly, the
migrationofnaive lymphocytes in secondary lymphoid tissueappears
predominantly random. It is unclear, however, whether directed
migration may escape detection in this random background. Using
a combination ofmathematical modeling and experimental data, we
investigate theextent towhichmodern two-photon imaging can rule
out biologically relevant directed migration. For naive T cells migrat-
ing in uninfected lymph nodes (LNs) at average 3D speeds of around
18 μm/min, we rule out uniform directed migration of more than
1.7 μm/min at the 95% confidence level, confirming that T cell migra-
tion is indeed mostly random on a timescale of minutes. To investi-
gate whether this finding still holds for longer timescales, we use
a 3D simulation of the naive T cell LN transit. A pure random walk
predicts a transit time of around 16 h, which is in good agreement
with experimental results. A directional bias of only 0.5 μm/min—less
than 3% of the cell speed—would already accelerate the transit two-
fold. These results jointly strengthen the random walk analogy for
naive T cell migration in LNs, but they also emphasize that very small
deviations from random migration can still be important. Our meth-
ods are applicable to cells of any type and can be used to reanalyze
existing datasets.

lymphocyte migration | statistical analysis | lymph node transit

Two-photon microscopy has fundamentally changed our view
of immune cell migration. The first groups who imaged lym-

phocyte migration in intact organs (1, 2) reported that cells move
in a run and tumble fashion and found no evidence for synchro-
nization or directionality. This finding came as a surprise to many
immunologists; previous research had emphasized the role of
chemokines, “immunology’s high impact factors” (3), and there-
fore, put forward a view of lymphocyte migration being nicely
orchestrated. However, lack of evidence for cell synchronization
does not necessarily rule out directed migration. Biased deviation
from random motion can create an effect that, like directed mi-
gration, causes cells to displace gradually. In biology, such de-
viation is most often caused by an external stimulus, like a
chemokine gradient or a flowing liquid, and is then called taxis.
Specific ways in which cells could respond to a directed stimulus
include faster migration (orthotaxis), preferential turning (top-
otaxis), and increased persistence (klinotaxis) to the stimulus (Fig.
S1). These different kinds of taxis are called taxis modes (4, 5).
Strong taxis, which was found in B cells (6) and neutrophils (7),

is obvious to the naked eye. However, detecting more subtle taxis
can require sophisticated data analysis; for instance, Castellino
et al. (8) used angle analysis to show that naive CD8+ T cells move
to sites where naive CD4+ T cells and dendritic cells interact.
These examples emphasize that detecting taxis is crucial, because it
may point to important biological functions of lymphocytes (9).
However, is it then appropriate at all to describe lymphocyte mi-
gration as random, or must we always assume that a substantial

amount of taxis is hidden in the data? Without knowing the
quantitative limits of two-photon cell tracking with regard to taxis
detection, this question is hard to answer, and doors remain wide
open for speculation. For example, although the migration of B
cells in the germinal center was first described as random (10), it
was then argued that two-photon data are consistent with both
random and directed migration (11, 12), and very recently, a small
directional bias to the light zone was revealed (13). In light of such
controversy, we ask here the following two questions. (i) How
strong is the random walk analogy—in other words, how and to
what extent can we rule out taxis based on current two-photon
data? (ii) Is the range of taxis that we cannot rule out still large
enough to be biologically relevant?
Apparently, our ability to detect taxis is determined to a large

extent by the data analysis method itself. Several methods are
available and have been discussed in detail elsewhere (14, 15),
but the need for a systematic study of their quantitative power
(16) has so far not been addressed. Therefore, we benchmark
both existing and new methods on experimental and computer-
generated data. We discuss our approach and its biological im-
plications in a simple, well-defined scenario: naive T cells mi-
grating in the lymph nodes (LNs) in the absence of antigen. In
this setting, the random walk turns out to be a surprisingly ac-
curate model for T cell motility on a short timescale, and it also
appears sufficient to explain T cell motility on a long timescale.

Results
Random Walk Accounts for >90% of T Cell Speed. We imaged
adoptively transferred polyclonal T cells in surgically exposed,
uninfected LNs of two recipient mice, resulting in datasets of
1,132 and 1,355 tracks, respectively, in a 492 × 492 × 40-μm im-
aging region (Fig. 1A). The imaged cells migrated at a mean 3D
speed of 17.9± 2.2 μm/min; no directedmigration was evident from
aligning the tracks to a common starting point (Fig. 1B). To analyze
the data for directionality, we applied Hotelling’s T2 test (17),
a generalization of the well-known 1D T test, to a set of cell steps
(15) extracted from the tracks (Fig. 1C, SI Text, and Fig. S2).
Hotelling’s test provides a confidence region for the mean cell
step (Fig. 1D), and the taxis speed can be estimated by dividing
the length of this mean step by the step duration, which in our
case, is 60.9 s (three imaging intervals). For random migration,
the mean step should be the null vector—cells go nowhere on av-
erage. If the null vector lies outside the confidence region, then this
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finding indicates significant taxis. Otherwise, the point in the con-
fidence region that is farthest from the null vector gives an upper
speed bound, which is the amount of taxis that we can safely rule
out (Fig. 1D). For our naive T cell datasets, the mean step lengths
are 0.62 and 0.73 μm, but the mean steps are not significantly dif-
ferent from random migration (P = 0.4 and P = 0.16). The upper
3D taxis speed bounds are 1.66 and 1.68 μm/min, respectively, at
the 95% confidence level. Thus, at most, 10% of the cell speed can
still contribute to uniform taxis. To quantify the random T cell
migration, we estimated the T cell motility coefficient (14) using
a method designed to work around the underestimation that is
caused by the finite imaging volume (SI Text, Figs. S3 and S4). This
method resulted in an estimate of 100 μm2/min.

Benchmarking Taxis Detection Methods. Hotelling’s test has, to our
knowledge, not been applied previously to lymphocyte migration
data. Thus, we next investigated how the sensitivity of this method
compares with that of more established ones using computer
generated cell tracks with and without taxis. We limit our dis-
cussion here to two important alternative methods: displacement
analysis, which is widely used (14, 15, 18), and angle analysis,
because it has recently received much attention (13, 15). For
displacement analysis, we generated mean square displacement
(MSD) plots, which are expected to be linear for random mi-
gration and curve up in case of directed migration (14). For angle
analysis, we calculated the mean 3D angle of the cell steps (Fig.
1C) to the taxis direction. This angle should be 90° for random
walk, and a lower angle indicates taxis (15). Note that this ap-
proach was only applicable to our simulated data for which we
knew the taxis direction. Because our movies did not allow us to
clearly identify medulla or sinuses, we had no hypothetical taxis
direction for our naive T cell data. Still, we were interested in

whether angle analysis outperforms Hotelling’s test if this in-
formation is available.
To generate the tracks, we used a simple simulation model

proposed by Beauchemin et al. (19). This model captures a key
feature of short-term lymphocyte motility (1): relatively straight
runs alternate with pauses, during which the cell acquires a new
orientation. We analyzed this model mathematically (SI Text), en-
abling us to calculate its motility coefficient and extend it to sim-
ulate taxis. Beauchemin et al. (19) extensively validated the short-
term migration characteristics of their model against experimental
data; by matching its motility coefficient to our estimate, we en-
sured that the long-term migration is also reasonably modeled.
We simulated three scenarios (Fig. 2): pure random walk,

random walk with taxis, and mixed populations containing 50%
taxing and 50% randomly walking cells. The taxing cells per-
formed orthotaxis at 3 μm/min (roughly two times our upper
bound) for the uniform population and 5.1 μm/min (themaximum
possible in our simulation) for the heterogeneous population
along the z axis. Crucially, we only tracked the simulated cells in
a volume having the size of our imaging region (Materials and
Methods). This method ensured that the bias caused by the finite
region was present in our simulated tracks as well. The track
snapshots were then aligned (Fig. 2A) to generateMSD plots (Fig.
2B). From the aligned tracks, we extracted cell steps (Fig. 2C) for
angle analysis (Fig. 2D) and Hotelling’s test (Fig. 2E). The results
revealed two issues that are discussed below in more detail.

A B

C D

Fig. 1. Quantitative bounds for taxis in two-photon data. (A) x and y pro-
jections of 1,355 naive T cell tracks. (Inset) A 40 × 40 × 40 μm subvolume for
comparison. (B) The tracks from A with aligned starting positions. No pref-
erential direction is apparent by eye. The small square corresponds to the
coordinate system in D. (C) Scatter plot of cell steps (duration = 60.9 s)
extracted from the tracks in B. (D) Hotelling’s T2 test gives a confidence re-
gion (ellipsoid) for the mean step (υmean). Because the null vector (cross) is
inside the confidence region, data are consistent with random motion. The
point in the confidence region that is farthest from the null vector (υmax)
gives an upper speed bound for taxis that may escape this analysis. Data are
shown for the x and y dimensions, and 3D values are in the text.

B

A

C

D

E

Fig. 2. Benchmarking two-photon data analysis methods. The power of
two-photon data analysis methods can be evaluated systematically using
computer-generated data (Materials and Methods) as shown here for the
three methods discussed in this paper. (A) Naive T cell data (red; 1,132 tracks)
are displayed for comparison alongside three simulated datasets: random
walk (black; 842 tracks), random walk with taxis (blue; 3 μm/min along z axis,
897 tracks), and a mixed population with 50% taxing cells and 50% ran-
domly walking cells (green; 5.1 μm/min along z axis, 893 tracks). Simulated
cells were tracked in a finite volume having the size of our two-photon
imaging region. (B) Mean square displacement of the data in A plotted as
a function of time. (C) Cell steps extracted from the tracks in A. Crosses in-
dicate the null vector (red = 703 steps; black = 693 steps; blue = 773 steps;
green = 749 steps). (D) Analysis of the mean angle between the cell steps (C)
and the taxis direction, which is known only for the simulated data. A mean
angle of less than 90° indicates taxis (mean angles and 95% confidence
intervals are shown; asterisk indicates significance). (E) Hotelling’s T2 test
applied to the y and z dimensions (compare with Fig. 1D).
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Displacement Analysis Can Be Misleading.None of the MSD plots in
Fig. 2B indicate directed migration. We suspected the reason to
be that a curved MSD plot can only arise if taxing cells are fol-
lowed for a very long time (Fig. 3 A and B). Because we are
imaging within a limited region (Fig. 3C), we quickly lose track of
fast cells, and long tracks should, thus, predominantly represent
slower than average cells, leading to an artificial impression of
cell confinement (15). To test this hypothesis, we generated
MSD plots for n = 10,000 simulated cells with and without taxis
along the z axis (Fig. 3D). Surprisingly, the MSD of the taxing
cells is significantly lower from 3 to 4 min on, and the MSD plot
is slightly more linear (R2 = 0.998 for t ≤ 5 min) compared with
the randomly walking cells (R2 = 0.994 for t ≤ 5 min). From
these MSD plots, one would conclude that the taxing cells are
less motile than the randomly walking ones, when in fact, the
opposite is true.
This seemingly counterintuitive result can be explained by

considering the effect of the finite imaging volume in more de-
tail. Because our imaging region is thinnest along the z axis, cells
performing taxis in that direction leave the imaging region more
quickly than those cells migrating randomly, which amplifies the
aforementioned artificial confinement. This artifact would be
much weaker if taxis were along the x or y direction, but at least
for certain combinations of imaging region shape and taxis di-
rection, it can apparently be strong enough to give misleading
MSD plots.

Orthotaxis Can Escape from Angle Analysis. Because we assumed
that the taxis direction is exactly known for applying angle analysis,
it may be surprising to observe (Fig. 2D and E) that angle analysis

detected only the uniformly biased population but not the partially
biased one, whereas Hotelling’s test detected both without
knowing the taxis direction. More detailed analysis revealed that
this finding was caused by the taxis mode; our simulations use
orthotaxis, which hardly affects the migration angle distribution.
Klinotaxis and topotaxis were more easily detected; however,
the sensitivity of angle analysis to these taxis modes was only
slightly better than that of Hotelling’s test (Fig. S5). This finding
emphasizes that angle analysis is a parametric test whose power
depends on the taxis mode. We conjecture that this problem can
be addressed by combining migration angles with movement
speeds, giving a version of Hotelling’s test that checks only for taxis
in a single direction rather than in all directions simultaneously.
In summary, our results indicate that the power of Hotelling’s

test is superior to displacement analysis and similar to angle
analysis with known taxis direction. Thus, it gives the best cur-
rently possible upper bounds for ruling out taxis of unknown
direction and mode.

Impact of Taxis on the T Cell LN Transit. To investigate the long-term
impact of small taxis on T cell migration, we constructed a partial
differential equation-based model of the T cell transit from
paracortex to sinuses in a rat LN (SI Text, Figs. S6 and S7). The
kinetics of lymphocyte recirculation in rats were thoroughly
studied during the 1980s and 1990s by cannulation experiments,
which reached recovery rates of up to >90% (20, 21). Because the
data available for mice are scarce in comparison, we preferred to
model the transit through a rat LN at the cost of assuming that
microscopic T cell migration in rats and mice is similar. In
a careful metaanalysis of several rat experiments, Stekel et al.
(22) estimated that LN transit times in rats range between 7 and
20 h. For our simulation, we used a mesenteric LN (Fig. 4), which
at a diameter of 4–6 mm, is among the largest LNs; therefore, the
transit time should lie within the upper end of the range esti-
mated by Stekel et al. (22). Our model (Fig. 4 A and B) dis-
tinguishes between paracortex (defined as containing few
macrophages and few B cells), sinuses (many macrophages and B
cells), and follicles (few macrophages and many B cells). If cells
are released uniformly in the paracortex and assumed to reach

A

C

B

D

Fig. 3. Displacement analysis can lead to wrong conclusions. (A) For ex-
ample, assume that one subset of T cells (black) migrates purely randomly,
whereas another subset (blue) performs taxis to the medulla. (B) If one could
follow the cell populations for a very long time, the difference could be
detected using a mean square displacement (MSD) plot, which is shown here
for two simulated cell populations tracked for 6 h without placing bounds
on the trajectories. Pure random walk (black; M = 100 μm2/min) leads to
a linear MSD, and taxis (3 μm/min) gives a curved MSD. Data are averaged
over 10,000 simulated cells, giving a negligibly small SEM. (C) Two-photon
imaging is limited to a finite region in which faster cells are un-
derrepresented, because they exit more quickly. (D) This effect can be
reproduced by truncating the simulated data from B to a finite region
(shading ± SEM for 10,000 simulated cells; region size = 492 × 492 × 40 μm as
in our experimental setup). If we compared the two populations based on
this plot alone, we would conclude that the blue population has lower
motility (slope) and persistence (curvedness) than the black one, when in
fact, the opposite is true.

A

B

C

Fig. 4. Modeling the naive T cell LN transit. (A) Microtome slice from
a mesenteric rat LN with B cells stained in brown and macrophages stained in
blue. (B) Using image processing algorithms (SI Text), the lymph node volume
was divided into three compartments: sinus (blue; abundant macrophages),
paracortex (green; few macrophages and B cells), and follicles (red; few
macrophages and abundant B cells). 3D renderings of the reconstructed
compartments are shown. (C) The 3D reconstruction was used to simulate the
transit of naive T cells from paracortex to sinus (a 2D projection of the central
LN slice is shown). The model assumes that naive T cells are released uni-
formly in the paracortex (green), transit to a nearby sinus region (blue), and
then, exit after around 1 h. For simulating taxis, a hypothetical chemokine
gradient (arrows) pointing from paracortex to sinus was created. Arrows in-
dicate direction of the gradient and taxis speed per minute, with arrow
lengths magnified 250-fold based on a mean taxis speed of 0.5 μm/min.
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the sinuses by pure random walk with M = 100 μm2/min, the
model predicts a median transit time of 16.1 h (Fig. 5 A and B).
To determine the impact of taxis on this transit time, we aug-

mented our model by a hypothetical long-range chemokine gra-
dient pointing to the sinuses (Fig. 4C and SI Text) and performed
simulations with varying cell responsiveness to this gradient, giv-
ing average paracortical taxis speeds of, at most, 2 μm/min. The
impact of taxis on transit time was dramatic (Fig. 5 A and C).
Merely 0.5 μm/min accelerated the median transit time 2.2-fold,
and the time at which 90% of the T cells had egressed decreased
2.84-fold. For comparison, we also analyzed the impact of varying
the motility coefficient on the transit time (Fig. 5 A and D). Here,
we found, consistent with the definition of the motility coefficient,
a roughly antiproportional relationship (i.e., to reduce the median
transit time by 50%, the motility coefficient would need to in-
crease twofold). Thus, the impact of over- or underestimating the
motility coefficient by 20% would be much less than that of 0.5
μm/min of taxis.
Our simple model assumes that T cells freely transmigrate

between sinuses and paracortex. The precise mechanisms of
T cell egress into the sinus have received much attention (23–27),
and these studies proposed the following multistep model. T cells
enter branched cortical sinusoid structures, which are mostly lo-
cated in a narrow transitional region between paracortex and
sinuses (27), in an S1P-dependent manner. From there, they flow
to the macrophage-rich regions within the sinus and ultimately,
reach the medulla from where they exit through efferent lym-
phatic vessels connected to the hilum. In a recent study, Grigorova
et al. (27) simulated this multistep egress using a 3D recon-

struction of the cortical sinusoid structure of a mouse LN. In their
model, cells can exit only through the sinusoids rather than across
the whole paracortex–sinus interface. To approximate the effect
of a transitional region that partially obstructs transzonal migra-
tion in our model, we lowered cell motility near the paracortex–
sinus boundary (SI Text and Fig. S8). On the one hand, this
modification increases the time that cells need to reach the
sinuses; on the other hand, after reaching the boundary region,
cells will more likely remain near it, which should decrease the
transit time. Simulations of the modified model show cell
crowding near the boundary (Fig. S8C), consistent with the
observations by Wei et al. (28) that cells apparently queue to exit
near the sinuses. However, because cells still spend most of their
time in the deep paracortex, 0.5 μm/min taxis still decrease the
median transit time 1.74-fold from 16.15 to 9.3 h. Thus, our
qualitative conclusions are unaffected by this more realistic
transmigration model.

Discussion
We have revisited a fundamental question. Is naive T cell mi-
gration in LNs in the absence of antigen directed or random? Or
in the words of Bajénoff et al. (16), how many cells would need to
migrate nonrandomly for it to be detected by two-photon mi-
croscopy? Using Hotelling’s T2 test, we can rule out uniform taxis
of 1.67 μm/min 3D speed with a confidence of 95%. This upper
bound is less than 10% of the mean cell speed and less than one
cell diameter in 10 min. The result extends to populations only
partially affected by taxis (e.g., a 50% subpopulation with taxis
of 3.34 μm/min is also excluded). Hence, the pure random walk
(with persistence) is a surprisingly accurate model of naive T cell
migration at the two-photon imaging timescale. Hotelling’s test
is applicable to any cell type and can be used to reanalyze
existing datasets.
Our benchmark results for two-photon data analysis methods

indicate that, for klinotaxis and topotaxis, Hotelling’s test and
angle analysis are similarly powerful provided that the taxis di-
rection for angle analysis is exactly known. Even then, angle
analysis misses orthotaxis of up to 4 μm/min in simulated T cell
data. This issue should be addressable by analyzing angles together
with speeds, which Beltman et al. (13) did most recently. Both
angle analysis and Hotelling’s test outperformed displacement
analysis, presumably because both are based on cell steps (Fig. 1C)
instead of entire tracks (Fig. 1B). Our imaging volume is axially
thin to increase image acquisition speed and avoid phototoxicity.
In such a volume, long tracks mostly represent slower than average
cells moving in the x and y plane. Beltman et al. (15) argued that
this effect may compromise cell-based methods such as displace-
ment analysis but not step-based methods. Our analysis confirms
that downward taxis is not missed by step-based methods, whereas
displacement analysis gives confusing results; the downward taxis
causes the observed displacement to decrease rather than increase
as expected, which would lead to a lower motility coefficient esti-
mate instead of a larger one. Extreme care should, thus, be taken
when using motility coefficients to compare different cell pop-
ulations, which is common practice (14). The results should be
supported by additional quantitative analysis methods, and simu-
lations such as ours can be used to investigate whether this artifact
could arise under the given experimental conditions.
There is recent evidence that lymphocyte migration in sec-

ondary lymphoid organs is guided by stromal cell networks (29).
T cells in LNs were shown to crawl on fibroblastic reticular cells
(30). Because the taxis mode can be relevant for data analysis, it
is instructive to consider how different taxis modes could be
realized by cells crawling on a network. For simplicity, let us
assume that cells can change directions only at network inter-
sections. Then, orthotaxis could be caused by a fluid flow that
influences cell speeds, but it is hard to envisage how such
a flow could be maintained with the turbulent T cell motion.

A B

C D

Fig. 5. Impact of taxis on the LN transit. (A) 2D snapshots of T cell con-
centrations from the central slice of the reconstructed LN (Fig. 4C) super-
imposed on grayscale images of the slice. Intensity of the red color is
proportional to T cell concentration. Top corresponds to random T cell
motility as estimated from our data. In the biased population (Middle), cells
perform taxis to the sinuses with 0.5 μm/min on average. Bottom shows the
effect of a 50% lower motility coefficient. (B) Detailed exit kinetics of the
three simulated populations (symbols on the curve indicate the matching
populations in A). For random T cell migration (squares), our simulation
gives a realistic median transit time of 16.1 h, which taxis accelerates roughly
twofold (7.33 h). (C) Transit time quantiles as a function of the taxis speed
with M = 100 μm2/min. Squares and triangles mark the same values as in A.
(D) Transit time as a function of the random walk motility coefficient in the
absence of taxis. Squares and circles mark the same values in A.
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Alternatively, T cells might have preferred turning directions at
network intersections, but in the densely packed space, they
would have to compete for these directions. Cells moving in their
preferred direction would try to keep going but could be pushed
away by other cells. This scenario would likely lead to a mix of
slow klinotaxis and topotaxis.
Slow taxis, which we cannot safely rule out, can still have a

huge long-term impact. In our mesenteric LN model, merely 0.5
μm/min of taxis (less than 3% of the cell speed) accelerate the
naive T cell transit time roughly two times. A simple calculation
can illustrate why this occurs. If we fill a ball with a radius of 800
μm with cells that migrate to the surface at 0.5 μm/min, then all
cells within 90 μm from the surface would leave the ball within
3 h. Although 90 μm seems small compared with the radius, only
100·(710/800)3 = 70% of the cells would remain. However, the
transit times predicted by our pure diffusion model are more
realistic. Consistent with our results, Grigorova et al. (27) predict
a transit time of 4–5 h for a small (0.5–1 mm) inguinal LN using a
random walk model, which even without taxis, is already very
fast. Chemokinesis alone might, thus, explain naive T cell mo-
tility. This view is supported by findings that chemical factors
promote T cell motility but not directionality; the main chemical
cues driving T cell motility are the CCR7 ligands CCL19 and
CCL21, which are present in the LN paracortex (31). In CCR7-
deficient mice, T cell motility within LNs is markedly reduced,
but the directionality seems unaffected (32).
It is important to point out that our results do not imply that

taxis of less than 10% the cell speed is impossible to detect—
ruling out taxis is not the same as showing taxis. For the latter
problem, assumptions like a potential target region or a specific
affected cell subtype can be exploited to increase sensitivity and
detect even highly nonuniform or localized taxis that could escape
our generic analysis. For instance, if the putative taxis direction
is known, one can normalize tracks from multiple experiments
accordingly and combine them in a single test. This method was
recently used by a study by Beltman et al. (13), which revealed
taxis of germinal center B cells to the light zone at less than 5% of
the cell speed. If taxis is suspected to act only within a region
that can be clearly identified, one can focus the analysis on the
tracks within that region. Similarly, suppose there were several
gradients pointing in opposite directions, and each affected equal
shares of the observed population. If we have a hypothesis
identifying the affected subpopulations, we can apply Hotelling’s
test to each one separately and therefore, reveal the taxis.
In summary, we have presented a method to rule out uniform

taxis in two-photon data and showed that the displacement plots
used in the past to provide evidence for random migration can
miss large amounts of such taxis. For naive T cells migrating in the
LN paracortex in the absence of antigen, the remaining gap for
taxis is narrow, and it is on the same quantitative range as subtle
imaging artifacts like tissue drift (15). To narrow the gap even
more, we used a simulation that extrapolates subtle motility fea-
tures from the two-photon timescale to a larger one, where they
accumulate to substantial, testable changes. Still, it is not yet
possible to rule out (relevant) taxis completely, because even very
small taxis can have a big long-term impact. How can the
remaining gap be closed? One option would be increasing the
imaging volume, because the width of the confidence region is
roughly antiproportional to the square root of the number of cells
visible at the same time (e.g., a 16 times larger volume would yield
a fourfold lower bound). Independently, data analysis and mod-
eling techniques could be further improved. One limitation of our
and similar modeling approaches (13, 19, 27) is the assumption
that cells are massless particles. Although such models can
faithfully reproduce individual cell trajectories, they cannot ac-

count for some effects of dense cell packing. For example, our
diffusion model predicts a cell concentration gradient across the
paracortex at equilibrium. Spatially explicit approaches like the
cellular Potts model (33) or cellular automata (34) better reflect
the effects of cell crowding, but they do not always faithfully re-
produce trajectory properties like turning angles or persistence
(33). Future work is needed to devise modeling techniques that
can account for both cell- and population-level properties of cell
migration in densely crowded lymphoid organs.

Materials and Methods
Intravital Two-Photon Microscopy. Magnetic bead negatively selected poly-
clonal CD4+ and CD8+ T cells (5 × 106, >95% purity; Miltenyi) were fluo-
rescently labeled with 4 μM 5-chloromethylfluorescein diacetate (Cell
Tracker Green; Molecular Probes) and adoptively transferred to sex-matched
6-wk-old C57BL/6 recipient mice. After 24 h, mice were anesthetized by an
initial i.p. injection of ketamine (50 mg/kg) and xylazine (10 mg/kg). The
right popliteal LN was prepared microsurgically for intravital microscopy and
positioned on a custom-built microscope stage. Care was taken to spare
blood vessels and afferent lymph vessels. The prepared LN was submerged in
normal saline and covered with a glass coverslip. A thermocouple was placed
next to the LN to monitor local temperature, which was maintained at 37 °C.
Two-photon imaging was performed with an Olympus BX50WI fluorescence
microscope equipped with a 20×, 0.95 numerical aperture objective (Olym-
pus) using a Prairie Technologies Ultima Two-Photon Microscope. For two-
photon excitation and second harmonic generation, a Tsunami Ti:sapphire
laser with a 10-W MilleniaXs pump laser (Spectra-Physics) with Deepsee
module was tuned to 800 nm. For 4D analysis of cell migration, stacks of 10
square x and y sections with 4 μm z spacing were acquired every 20.3 s with
electronic zooming up to two times to provide image volumes 40 μm in
depth. Cell tracks were extracted using Volocity software. All of the above
experiments were in accordance with National Institutes of Health guide-
lines and were approved by the Committees on Animal Care and Use of both
Harvard Medical School and the Immune Disease Institute.

Statistical Analysis of Cell-Tracking Data. Analyses of migration angles relative
to a known taxis direction were performed as described by Beltman et al. (15).
All other analyses were performed according to the step by step protocols
given in SI Text.

Simulating Cell Tracks with Taxis. The parameters used for the model by
Beauchemin et al. (19) were tfree = 2 min, tpause = 0.5 min, and vfree = 19.1 μm/
min; vfree was adjusted to match the desired motility coefficient. The model
was extended for simulating taxis with a predefined speed as described in SI
Text. For generating the datasets shown in Figs. 2 and 3D, 1,000 cells were
set to random initial positions in a 550 × 550 × 550 μm3 torus and simulated
for 60 min; their trajectories were tracked inside in a 492 × 492 × 40 μm3

subvolume (the imaging region size in our 2P experiments) of the torus. The
cells in Fig. 3B were tracked in an unlimited space.

3D Reconstruction of a Rat LN. Adult male Lewis rats were obtained from
Charles River GmbH and were housed in the central animal facility of the
University of Lübeck. A single mesenteric LN was harvested from a rat and
fixated. The organ was cut in a microtome into 12-μm-thick slices. T cells and
macrophages were stained on the sections using anti-IgM (brown) and anti-
ED12 (blue) antibodies. The slices were photographed using a digital camera
mounted on a microscope (Zeiss). 3D reconstruction of the LN and partial
differential equation-based simulation of the T cell LN transit were then
performed as described in SI Text. All experiments were in accordance with
the German Animal Protection Law and were approved by the Animal Re-
search Ethics Board of the Ministry of Environment.
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