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Figure S1. Impact of anti-LFA1 Mab treatment in non-infected mice.
(a) C57Bl/6 mice were treated with 200g anti-LFA-1 Mab (BioXcell, clone M17/4) every 2 days for 8 consecutive days. During anti-LFA1 Mab treatment blood CD8+ T cells were isolated and their numbers (b) and expression levels of LFA-1 were quantified by flow cytometry (c,d). In order to detect the amount of free LFA-1 molecules in CD8 T cell isolated from anti-LFA1 treated mice we performed an antibody staining with the same clone (M17/4) that was used for treatment. As a control we used day 9 LFA1-/- P14 TEFF isolated from LCMV-CL13 mice.
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Figure S2. Impact of anti-LFA-1 Mab antibody treatment on disease and control of LCMV-CL13 viremia. (a) Monitoring of weight loss during LCMV-CL13 infection. (b) LCMV viral titers were determined by plaque assay in in several organs at day 30 post-infection for LCMV-CL13 infected mice. Detection limit 100pfu.
* p<0.05, ** p<0.001, *** p<0.0001. Error bars represent mean±SEM. Three independent experiments including 3 mice per group were performed with similar results.
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Figure S3. Impact of LFA-1 deficiency in TEFF differentiation after LCMV-CL13 infection.
(a,b) Surface expression of KLRG1, IL7R, CD27 and CD62L was evaluated in the WT and LFA1-/- P14 TEFF from different organs at the day 9 p.i. with (5x104pfu) LCMV-CL13.
Two independent experiments including 3 mice per group were performed with similar results.
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Figure S4. Impact of LFA-1 on CD8 T cells burst size after LCMV-CL13 infection.
A small number (10,000 cells) of naïve LFA-1+/+ CD45.1+ and LFA-1-/- CD45.2+ P14 TN cells were enriched by magnetic negative selection (>95% purity) and transferred into the separate WT CD45.2+ recipient, thus generating P14 chimeric mice. (c) 24 hours later, recipient mice were i.v. challenged with LCMV-CL13 (5x104 pfu) that were able to clear infection with kinetics similar to non-chimeric mice. TEFF burst size was quantified overtime in the blood of LCMV-CL13 infected mice by flow cytometry.
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Figure S5. Gating strategy for transcriptome analysis. (a) DexGP-33 TEFF were identified based on their surface expression of CD8 and binding to Dextramer GP33. (b) P14 TEFF were identified based on their surface expression of LFA-1 and CD45.1 after gating on CD8+ lymphocytes. 
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Figure S6. GSEA analysis of P14 and DexGP-33 TEFF generated during LCMV-CL13 infection. (a) Overlap in the pathways identified by GSEA to be enriched in LFA1-/- P14 TEFF and DexGP-33 TEFF from anti-LFA-1 Mab treated mice at day 9 p.i. when compared to LFA1+/+ P14 TEFF and DexGP-33 TEFF from control infected mice, respectively.
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Figure S7. Naïve P14, P14 and DexGP-33 TEFF expression of a set of genes involved in cell death.
(a)  Relative expression levels of genes in Dex-GP-33 TEFF from control and anti-LFA-1 Mab treated mice in comparison to P14 LFA1+/+ naïve cells.  (b) Relative expression levels of genes in LFA1+/+ and LFA1-/- P14 TEFF in comparison to LFA1+/+ and LFA1-/- P14 naïve cells.
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Figure S8. Transcriptional signatures of exhaustion, anergy and deletion tolerance in TEFF  in P14 TEFF. Geneset enrichment analysis (GSEA) on T cells exhaustion 41, anergy 40 and deletion tolerance 39signatures from MSigDB v7.1 (Broad institute) was performed on day 9 P14 TEFF from LCMV-CL13 infection mice. 
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Figure S9. Transcriptional signatures of exhaustion, anergy and deletion tolerance in Dex-GP33 specific. Geneset enrichment analysis (GSEA) on T cells exhaustion 41, anergy 40 and deletion tolerance 39signatures from MSigDB v7.1 (Broad institute) was performed on day 9 Dex-GP33 TEFF from LCLV-CL13 infection mice. 
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Figure S10. Naïve P14, P14 and DexGP-33 TEFF expression of a set of transcription factor genes involved in CD8 T cell function. (a)  Relative expression levels of genes in Dex-GP-33 TEFF from control and anti-LFA-1 Mab treated mice in comparison to P14 LFA1+/+ naïve cells.  (b) Relative expression levels of genes in LFA1+/+ and LFA1-/- P14 TEFF in comparison to LFA1+/+ and LFA1-/- P14 naïve cells.
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Figure S11. Naïve P14, P14 and DexGP-33 TEFF expression of a set of inhibitory receptor genes involved in CD8 T cell function. (a)  Relative expression levels of genes in Dex-GP-33 TEFF from control and anti-LFA-1 Mab treated mice in comparison to P14 LFA1+/+ naïve cells.  (b) Relative expression levels of genes in LFA1+/+ and LFA1-/- P14 TEFF in comparison to LFA1+/+ and LFA1-/- P14 naïve cells.
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Figure S12. Naïve P14, P14 and DexGP-33 TEFF expression of a set of genes involved in CTL function.
(a)  Relative expression levels of genes in Dex-GP-33 TEFF from control and anti-LFA-1 Mab treated mice in comparison to P14 LFA1+/+ naïve cells.  (b) Relative expression levels of genes in LFA1+/+ and LFA1-/- P14 TEFF in comparison to LFA1+/+ and LFA1-/- P14 naïve cells.

Table S1. GSEA of BIOCARTA curated gene sets from the Molecular Signatures Database (MSigDB) specifically enriched on CD8 T cells upon anti-LFA-1 ab treatment. GSEA analysis was used to identify cellular pathways significantly enriched in GP33+ specific CD8 T cells from 5x104 pfu LCMV-CL13 infected mice treated with anti-LFA-1 Mab in comparison to those from PBS treated mice. Cut off was established as FDR <20% and p<0.05.

Table S2. GSEA of BIOCARTA curated gene sets from the Molecular Signatures Database (MSigDB) specifically enriched on P14 LFA-1-/- T cells after LCMV infection. GSEA analysis was used to identify cellular pathways significantly enriched in day 9 p.i. LFA-1-/- P14 TEFF in comparison to LFA-1+/+ P14 TEFF from 5x104 pfu LCMV-CL13 infected mice. Cut off was established as FDR <20% and p<0.05.
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