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The immune system has evolved to protect the host from infectious agents,

parasites, and tumor growth, and to ensure the maintenance of homeostasis.

Similarly, the primary function of the somatosensory branch of the peripheral

nervous system is to collect and interpret sensory information about the

environment, allowing the organism to react to or avoid situations that could

otherwise have deleterious effects. Consequently, a teleological argument can be

made that it is of advantage for the two systems to cooperate and form an

“integrated defense system” that benefits from the unique strengths of both

subsystems. Indeed, nociceptors, sensory neurons that detect noxious stimuli and

elicit the sensation of pain or itch, exhibit potent immunomodulatory capabilities.

Depending on the context and the cellular identity of their communication partners,

nociceptors can play both pro- or anti-inflammatory roles, promote tissue repair or

aggravate inflammatory damage, improve resistance to pathogens or impair their

clearance. In light of such variability, it is not surprising that the full extent of

interactions between nociceptors and the immune system remains to be

established. Nonetheless, the field of peripheral neuroimmunology is advancing at

a rapid pace, and general rules that appear to govern the outcomes of such

neuroimmune interactions are beginning to emerge. Thus, in this review, we

summarize our current understanding of the interaction between nociceptors

and, specifically, the myeloid cells of the innate immune system, while pointing

out some of the outstanding questions and unresolved controversies in the field. We

focus on such interactions within the densely innervated barrier tissues, which can

serve as points of entry for infectious agents and, where known, highlight the

molecular mechanisms underlying these interactions.

KEYWORDS

neuroimmune interactions, nociceptors, myeloid leukocytes, neuropeptides, control
of immunity
1 Introduction

Innate immunity is, in some form, present in virtually all multicellular organisms (1, 2).

The functions of the innate immune system include not only elimination of pathogens by

direct killing and activation of the adaptive immune system (in organisms in which it is

present) (3), but also the induction, modulation and resolution of inflammation, tissue
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repair (4–6), and control of metabolism (7). Functionally, innate

immune cells lack the receptor repertoire diversity of the adaptive

immune system, but instead express a selection of germline-

encoded receptors that allow recognition of conserved pathogen-

associated molecular patterns (PAMPs) as well as damage-

associated molecular patterns (DAMPs). Such receptors imbue

the innate immune cells with the ability to rapidly respond to the

presence of pathogens as well as signs of cellular distress in their

environment (8). Furthermore, tissue-resident innate immune cells

are strategically located throughout the body and are concentrated

in barrier tissues, such as the skin or mucosal surfaces. Thus, in

most cases, innate immune responses are initiated within minutes

to hours after insult and constitute the body’s first line of

defense (9).

On a single-cell level, innate immune cells represent a

heterogenous group of leukocytes, which differ in their function,

tissue distribution, migratory properties, life-span, turnover, origin,

and plasticity. Historically, the various cell types have been

differentiated based on their morphology, physiological functions

and phenotypes as well as, more recently, their ontogeny. Most

innate immune cells are of myeloid origin, i.e. they arise from a

common myeloid progenitor (CMP) in the bone marrow (BM) in

adults, and from erythro-myeloid progenitors (EMP) in the yolk sac

during development (10). Complex relationships between further

developmental stages of various myeloid cell types exist, and our

understanding of the plasticity of their respective progenitors

remains incomplete. Nonetheless, based on phenotypical

similarities, myeloid cells can be broadly divided into three

families: the mononuclear phagocytes (dendritic cells ,

macrophages and monocytes) (11), polymorphonuclear

granulocytes (neutrophils, basophils and eosinophils) (12), and

mast cells (13). In addition to myeloid cells, innate lymphoid cells

(ILCs) originating from the common lymphoid progenitor (CLP)

have been a focus of intensive research in recent years (14). Notably,

neural control of ILCs has been described and reviewed recently

(15). Consequently, this review will specifically focus on the effects

that nociceptors have on the myeloid immune cell compartment.

Nociceptors are specialized afferent nerve fibers that respond to

noxious stimuli such as physical damage, excessive pressure, irritant

chemicals, or extremes of temperature and initiate withdrawal/

avoidance behavior or irritant removal (16). Based on the
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modality of the stimuli that they detect, nociceptors can be

unimodal or polymodal, i.e. responding to a single or several

types of noxious stimuli, respectively (17). Historically,

nociceptors have also been classified by the physiological

properties of their axons into myelinated A fibers and non-

myelinated C fibers, with the latter being the more prevalent

group (16–18). More recently, transcriptomic sequencing

techniques have begun to define nociceptor subsets based on their

gene expression signatures. Indeed, a recent single-cell RNA

sequencing study of neurons in murine dorsal root ganglia

(DRGs) (19), has proposed classification of nociceptors in into six

broad subsets: three non-peptidergic (NP1-3), two peptidergic

(PEP1-2) and one tyrosine hydroxylase (TH)-expressing

population. Within this classification, the NP1 subset appears to

be involved in inflammatory pain, NP3 in inflammatory itch, and all

three NP subsets in pruritus in general. The PEP1 population

corresponds to thermo-sensitive neurons, whereas PEP2 represent

lightly-myelinated Ad nociceptors (19), which normally respond to

mechanical or thermal stimuli (18). Somewhat confusingly, both

peptidergic and non-peptidergic nociceptors within this

classification express different patterns of neuropeptides (Table 1),

several of which are known to modulate myeloid cell functions (see

below). Of note, more recent studies have suggested dividing

nociceptors into as many as 10 different subsets (20).

Additionally, even nociceptors belonging within the same subset

have been shown to express specific gene patterns depending on the

organs they innervate (21), indicating that additional heterogeneity

exists and the classification of nociceptors is anything

but straightforward.

Nevertheless, nociceptors share certain molecular features that

allow their identification and selective experimental manipulation.

For example, the NaV1.8 voltage-gated sodium channel is expressed

in approximately 90% of all nociceptors and is often considered a

pan-nociceptor marker (22). Consequently, although NaV1.8 is also

found in certain low-threshold mechanoreceptors (23), NaV1.8-Cre

‘knock-in’ mice (24) have been widely used to target and

manipulate nociceptors by genetic means (25–28). Additionally,

prominent transient receptor potential (TRP) cation channels have

been identified, which often correlate with the specificity of

nociceptors for various noxious stimuli including heat (TRPV1),

chemical irritants (TRPA1), cold (TRPM8), and others (29). As a
TABLE 1 Expression of the main neuropeptides with immunoregulatory potential toward myeloid cells across nociceptor subsets at the steady state,
as reported by the (19) single cell RNAseq dataset.

PEP1 PEP2 NP1 NP2 NP3 TH

CGRPa ++++ ++++ + ++++ + +

CGRPb ++ +++ +++ ++++ – +++

Adrenomedullin + + – – – –

Intermedin – – – – – +

SP ++++ – + + + +

VIP – – – – – –

PACAP +++ – + + – +
– no expression detected, + expression in <25% of cells, ++ expression in 25 - 50% of cells, +++ expression in 50 - 75% of cells, and ++++ expression in > 75% of cells.
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result, genetic, as well as chemical means of targeting TRP channels

have been developed, which allow for manipulation of nociceptors

of a given specificity (30). Experimental means of targeting TRPV1+

nociceptors in particular have been widely used in the field, as

exemplified by TRPV1-Cre ‘knock-in’ mouse models (31) and the

use of TRPV1 agonists, such as capsaicin and resiniferatoxin (RTX),

which can hyper-activate and specifically ablate the TRPV1+

nociceptors (32, 33).

Anatomically, nociceptor cell bodies are located in the

trigeminal ganglia for nociceptors innervating the head and in the

DRGs for nociceptors innervating all other parts of the body.

Morphologically, nociceptors are pseudo-unipolar neurons with

one axon that bifurcates into a proximal and a distal branch. The

proximal process terminates in the dorsal horn of the spinal cord or

in sensory nuclei of the brainstem, while the distal processes project

to peripheral target tissues where they terminate in free endings

(18). In addition to their afferent function, nociceptors also exhibit

efferent modalities, which are believed to be mediated by several

mechanisms including the axon reflex (backpropagation of action

potentials through collateral branches) (34) and the antidromic

activity (conduction in the reverse direction) (35) (Figure 1).

Notably, as we will discuss in detail below, efferent functions of

nociceptors include the peripheral release of neuropeptides, which

act on cells in their proximity, including myeloid leukocytes (34,

35). Of note, the impact of nociceptors and nociceptive

neuropeptides on specific target cells depends, at least in part, on

the target tissue (36). For example, in the skin, myeloid immune

cells are the main targets of nociceptors (26, 37, 38), while in lymph

nodes (LNs), the effect on LN-resident myeloid cells is more limited.

Instead, non-immune stromal cell types have been identified as the

primary communication partners of nociceptors within LNs (21).

Lastly, further highlighting how intimately intertwined immune

and peripheral nervous systems are, nociceptors express, and are

functionally impacted by many of the receptors traditionally

thought of as “immune”, including Fc receptors (39), PRRs (40),

and checkpoint molecules such as PD-L1 (41).
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2 Neuropeptides and neuropeptide
signaling in immune cells

Neuropeptides are considered the main communication signals

that nociceptors emit to impact immune responses, and, indeed,

expression of neuropeptide receptors is widespread among myeloid

immune cells (Table 2). In addition to their immune-modulatory

properties, however, neuropeptides also influence numerous other

cell types and, as a result, their specific impact on immune cells has

often been tested in reductionist systems in vitro or ex vivo. While

this strategy is suitable to identify the molecular mechanisms of

action within given cell types, it ignores the tissue context and may

not accurately reflect the role that neuropeptides play in

physiological settings. Complicating matters further, the

concentrations of neuropeptides that can be reached in target

tissues due to nociceptor activation remain poorly defined.

Consequently, despite a large body of literature detailing the

effects of neuropeptides on specific cells in isolation, our

understanding of how they impact the function of the immune

system as a whole remains far from complete. Finally, it is

important to stress that nociceptors are not the only source of

neuropeptides (43–45). Consequently, studies in which cells/

animals are directly exposed to a neuropeptide (or its inhibitor)

can only elucidate effects of the neuropeptide itself, but may not

necessarily define the physiological effect of nociceptors.

Finally, it should be noted that many neuropeptides, including

calcitonin gene-related peptide (CGRP), Substance P (SP) and

vasoactive intestinal peptide (VIP), exhibit structural similarities

to cationic antimicrobial peptides and, as a result, can exert, at least

to some degree, antimicrobial activity (46, 47). The LD50 described

for most bacterial strains, however, lies in the high micromolar

range (48), arguably, well above the concentrations that nociceptor-

derived neuropeptides are expected to reach within tissues.

Consequently, the physiological relevance of this phenomenon

remains unclear, though, a possible role in the regulation of gut

microbiota has been suggested (49).
FIGURE 1

Schematic depiction of the physiological organization of and signal transmission by nociceptors. Arrows indicate the direction of action potential
propagation. Black arrows correspond to the afferent transmission of signals elicited by peripheral activation of nociceptors by a noxious stimulus,
terminating in the spinal cord and leading to the sensation of pain or itch. Blue and green arrows correspond to the efferent transmission by means
of antidromic activity (conduction in the reverse direction) and axon reflex (backpropagation of the action potential through collateral branches)
respectively, leading to the peripheral release of neuropeptides.
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2.1 CGRP neuropeptide family

The CGRP family of neuropeptides includes CGRPa (50) and

CGRPb (51), which are thought to be functionally redundant (52),

adrenomedullin (AM) (53), and intermedin (54) (also known as

adrenomedullin 2 (AM2)). All the CGRP-family neuropeptides

signal through a heterodimeric transmembrane receptor

comprising a G protein-coupled receptor (GPCR), calcitonin

receptor-like receptor (Calcrl), and one of three known receptor-

activity modifying proteins (RAMPs) (55). While Calcrl is the

signal-transducing, shared subunit, the RAMP proteins dictate the

specificity of the complex with RAMP1–Calcrl being the CGRP

receptor and RAMP2/3–Calcrl the AM1/2 receptors (56). Of the

three related neuropeptides, CGRP is the most extensively studied,

and its pleiotropic effects are too numerous to be all listed here. The

interested reader is referred to an excellent in-depth review (52).

Within the scope of the immune system, the effects of CGRP are

mostly thought of as anti-inflammatory (25, 28, 57–60), however,

several recent studies have highlighted potent pro-inflammatory

functions of this neuropeptide in specific contexts (37, 38). The

roles of both AM and AM2 remain much less explored; however,

they too have been shown to exert some broadly immunoinhibitory

functions (61–65).

Several types of Ga-proteins are known to couple with the

CGRP receptor, leading to the activation of a variety of signaling

pathways (Figure 2A), some of which appear to be cell-type specific

[reviewed in (55)]. Most prominently, GaS coupling leads to the

activation of adenylyl cyclase (AC) (66, 67) and intracellular

accumulation of cyclic AMP (cAMP) (68). Conversely, Gai

coupling in certain cell types has been shown to inhibit AC and,

instead, to drive JNK activation (69). Finally, CGRP signaling via

Gaq activates phospholipase C (PLC)-b and protein kinase C (PKC)

(70, 71). Consequently, it is tempting to speculate that a preferential

engagement of certain Ga subunits by other GPCRs could decrease

their overall availability and, thus, regulate the outcomes of CGRP

receptor ligation. Lastly, it has been speculated that CGRP may also
Frontiers in Immunology 04
signal through Ga-independent pathways, however, the biological
relevance of this mechanism is unclear (55).

The immuno-inhibitory effects of CGRP are thought to be

mainly due to the activation of AC. The resultant accumulation

of cAMP activates protein kinase A (PKA) and upregulates the

inducible cAMP early repressor (ICER) (72) which, in turn,

prevents recruitment of the transcription factor ATF-2 to, among

others, the Tnfa promoter (73, 74). Additionally, PKA can

phosphorylate the cAMP response element-binding protein

(CREB), resulting in nuclear translocation of the CREB-regulated

transcriptional cofactors (CRTC) 2 and 3, and expression of the

anti-inflammatory cytokine IL-10 (75). Finally, cAMP also induces

the expression of a transcriptional repressor, Jdp2, which can bind

the p65 NF-kB subunit and prevent its docking onto target

promoters (57). Additional, cAMP-independent mechanisms are

likely also involved, as increased intracellular cAMP concentration

alone is not sufficient to mimic the effects of the neuropeptide (76).

Inhibition of IkB kinase b phosphorylation and subsequent

inhibition of NF-kB signaling was suggested as one such

mechanism (77), however, the exact underlying details

remain unclear.

Mechanisms of the proinflammatory actions of CGRP in

myeloid cells are unknown. In other cell types, however, they,

counterintuitively, also appear to rely primarily on the activation

of PKA (78, 79). The reasons why the cAMP–PKA axis could act as

both pro- and anti-inflammatory are similarly poorly understood,

but could be a result of a differential balance between other signaling

pathways that exhibit distinct activities in different cell types and/

or states.
2.2 Substance P

Substance P (SP) is a neuropeptide of the tachykinin family (80)

and mainly exerts its functions through one of three GPCRs: the

broadly expressed high-affinity neurokinin 1 receptor (NK1R) (81),
TABLE 2 Expression of neuropeptide receptors on immune cells based on the RNAseq and microarray data deposited in the Immgen database (42)
(https://www.immgen.org/Databrowser19/DatabrowserPage.html).

Neuropeptide Receptor DCs Macrophages Monocytes Neutrophils Eosinophils Basophils Mast cells

CGRP/AM/IM Calcrl +/++ ++/+++ +/++ ++ +/++ -/+ +/++/+++

CGRP RAMP1 ++ -/++/+++ ++ ++/+++ -/+/++ -/++ ++/+++

AM/IM
RAMP2 -/+ -/+/++/+++ -/+ -/+ -/+/++ -/+ -/+

RAMP3 -/+/++ +/++ -/+ -/+ -/+ -/+ +/++

SP

NK1R -/+ -/+ -/+ -/+ -/+ -/+ -/+

MRGPRD -/+ -/+ -/+ -/+ -/++ -/++ ++

MRGPRA1 -/+ -/+ – – -/+ -/+ -/+

VIP/PACAP
VPAC1 + -/+ -/+ + + -/+ +/++

VPAC2 -/+ -/+ -/+ -/+ -/+ -/+ +

PACAP PAC1 -/+/++ -/+/++ -/+ -/+ -/++ +/++ -/++
– no expression, + low expression, ++medium expression, +++ high expression. Multiple symbols signify uncertainty due to differences between RNAseq and microarray datasets, or variability
in expression between cell subsets.
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and the more recently discovered MRGPRB2 andMRGPRA1 which

are selectively expressed by mast cells (82–84) and DCs, respectively

(85). The actions of SP in most contexts are pro-inflammatory, and

several signaling pathways have been implicated (Figure 2B) (86,

87). Specifically, NK1R ligation leads to the activation of PLC,

which generates the second messengers inositol trisphosphate (IP3)

and diacyl-glycerol (DAG). These, in turn, can mobilize calcium

from intracellular stores and activate PKC (87). In addition, the

phosphoinositide 3-kinase (PI3K)-Akt pathway (88) as well as

direct activation of the p38 and ERK1/2 mitogen-activated

protein kinases (MAPKs) exert proinflammatory effects by

triggering NF-kB (89, 90). NK1R can also activate AC with

resultant cAMP accumulation and PKA activation (91).

Considerably less is known about the signaling pathway

downstream of MRGPRB2. Its engagement ultimately leads to a

sustained increase in intracellular calcium levels (92) through store-

operated calcium entry (SOCE) by the calcium sensor stromal

interaction molecule 1 (STIM1) and activation of p38 and ERK

MAPKs (93, 94). Additionally, SOCE-independent Akt activation

has been reported (94). The mechanistic underpinnings of

MRGPRA1 signaling in immune cells remain unknown (85).
2.3 VIP and PACAP

Vasoactive intestinal peptide (VIP) and pituitary adenylate

cyclase-activating polypeptide (PACAP) are related neuropeptides

most commonly upregulated by neurons, including nociceptors,
Frontiers in Immunology 05
following peripheral nerve injury (95, 96). In nociceptors at steady

state, PACAP and VIP often colocalize with CGRP and SP (97, 98),

and the tissue content of PACAP is decreased following capsaicin-

induced nociceptor depletion (97, 99). The actions of VIP and

PACAP are considered to be broadly anti-inflammatory, as these

neuropeptides inhibit the release of pro-inflammatory cytokines

including TNFa, IL-6, IL-1a and IL-1b, and enhance expression of

the anti-inflammatory cytokine IL-10 by several myeloid cell types

(Figure 2C) (95, 96). These effects are thought to be, at least in part,

due to the inhibition of TNFa gene expression, which VIP/PACAP

control by two independent mechanisms: blocking NF-kB binding

to the Tnfa promoter elements, and inhibiting JNK activity,

resulting in a decreased phosphorylation of the c-Jun protein and

its absence from the CREB complexes docking onto the cAMP

response element (CRE) promoter of the Tnfa gene (100). Such

mechanisms of action are similar to those of CGRP, as described

above (see Figures 2A,C), making it likely that, in addition to Tnfa,

they apply also to other pro-inflammatory genes. Additionally,

cAMP-dependent inhibition of interferon regulatory factor-1

(IRF-1) transactivation (101) and upregulation of IL-10 have been

described (102).

Several receptors for VIP and PACAP have been identified. One

receptor, PAC1, is specific for PACAP, whereas VPAC1 and 2 bind

indiscriminately to both VIP and PACAP (95). All three receptors

participate in immune regulation. In particular, PAC1 and VPAC1

are expressed constitutively on myeloid as well as lymphoid cells,

while VPAC2 appears to be inducible, especially in T-cells (103).

Like other neuropeptide receptors, VPAC1/2 and PAC1 belong to
B

C

A

FIGURE 2

Signaling pathways downstream of neuropeptide receptors. Known signaling pathways initiated by (A) calcitonin gene-related peptide (CGRP), (B)
Substance P, or (C) vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) signaling in immune cells are
summarized. Green arrows indicate activation, red blunt-ended arrows indicate inhibition.
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the GPCR superfamily, and their ligation by agonists leads to

coupling to GaS and activation of AC with downstream

accumulation of cAMP (104). Additionally, all three receptors can

couple to Gaq, and VPAC1/2 can also signal viaGai to activate PLC

and calcium mobilization (105). Finally, all three receptors can

activate phospholipase D (PLD) (106), however, the underlying

mechanism and the relevance of PLD activation for the effects of

VIP and PACAP remain poorly understood (105).
3 Control of myeloid cells by
nociceptors

Nociceptors employ multiple neuropeptide-dependent and

-independent means to exert control over myeloid immune cells,

whereby the downstream consequences often vary with the target

cell type. In the following, we will discuss the most prominent

mechanisms by which nociceptors act on each of the major myeloid

target cell subsets.
3.1 Dendritic cells

Dendritic cells (DCs) are a group of myeloid cells derived from

the common DC progenitor (CDP) that include the classical DCs

(cDCs) and plasmacytoid DCs (pDCs) (107). pDCs are known for

their ability to produce copious amounts of type I and III

interferons (IFNs) in response to viral infections, and only exhibit

a limited ability to present antigens (108). Notably, pDCs have not

been reported to be under the control of nociceptors or respond to

nociceptive neuropeptides and will not be further discussed here.

Conversely, cDCs (henceforth referred to as DCs) are best known

for their ability to take up and present antigens to naive T-cells to

activate the adaptive arm of the immune system (109) as well as to
Frontiers in Immunology 06
induce and maintain tolerance to self and innocuous non-self

antigens (110, 111). Additionally, DCs play important roles as

sentinel cells within tissues and are involved in pathogen

surveillance as well as orchestration of local immune responses by

secretion of cytokines, chemokines and other mediators (112). Two

subsets of DCs exist – cDC1 and cDC2 – which differ in their

phenotypic as well as functional properties. Specifically, cDC1s,

identified by their expression of XCR-1 and DNGR-1 (a.k.a.

Clec9a), exhibit better ability to present exogenous antigens to

CD8+ T-lymphocytes, owing to their superior ability to cross-

present (i.e. to process and present antigenic peptides from

exogenous proteins on MHC class-I complexes). Conversely,

cDC2s, identified by their expression of SIRPa and/or CD11b, are

generally thought to be superior in their ability to present antigens

to CD4+ T-lymphocytes, and they comprise the majority of DCs in

most tissues (109, 111). Additionally, significant heterogeneity

exists among DCs that reside in different anatomic locations

(113). This underappreciated diversity could potentially explain

some of the seemingly inconsistent observations discussed below.

Importantly, both DCs and nociceptors are abundant in

peripheral barrier tissues such as the skin and mucosal surfaces,

which places them within close proximity of each other (114). For

example, DCs and nociceptors engage in direct physical interactions

in the murine skin (26, 85). Indeed, DCs in both the skin (26, 38, 85)

and the airways (115) are important targets of nociceptor derived

communication signals. Similarly, Langerhans cells (LCs) – a subset

of specialized dermal phagocytes that are of macrophage lineage but

display many functional properties of DCs (116) – are also known

to associate with nociceptors, and respond to neuropeptides (117)

(Figures 3–5). DCs are also abundant in secondary lymphoid

tissues, including lymph nodes, which are innervated by a unique

subset of nociceptors located in the outermost capsular and

subcapsular regions (21). However, most lymph node resident

DCs are concentrated in the paracortical T cell zone, which is
FIGURE 3

Known in vivo effects of substance P on myeloid cells. Upward pointing arrows signify upregulation/activation, downward facing arrows signify
downregulation/inhibition.
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largely devoid of nociceptors, suggesting that lymph node DCs may

be relatively less impacted by nociceptors than their counterparts in

peripheral barrier tissues.

CGRP effects on DCs: Nociceptor-derived CGRP exerts critical

effects on dermal DCs in some, but not all, settings of experimental

skin inflammation: One study demonstrated that nociceptor-

derived CGRP induced IL-23 production by CD301b+ cDC2s

upon cutaneous Candida albicans infection (38). By contrast,

CGRP was dispensable for nociceptor-induced IL-12 and IL-23

production by dermal DCs upon topical treatment with a TLR-7

agonist, Imiquimod (IMQ), in a model of psoriasiform skin

inflammation (26). Both studies utilized similar methods to show

that nociceptor ablation diminished the cytokine response of

dermal DCs. However, in the context of the C. albicans infection,

local injection of CGRP was sufficient to drive the IL-23

accumulation even in nociceptor-depleted mice, and application

of a CGRP antagonist reduced the levels of IL-23 in animals with

intact nociceptors (38). Conversely, in the IMQ model, CGRP

antagonists had no effect (26). The reasons underlying this
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discrepancy remain unexplained but could, conceivably, be a

result of different subsets of nociceptors responding to a

cutaneous fungal infection compared to a defined TLR agonist, or

different modalities of activation elicited by the two stimuli in DCs

and/or nociceptors. Alternatively, microbiota colonizing the skin

could potentially have differentially modulated neuroimmune

interactions, as has been recently reported in the gut (118). Lastly,

it is pertinent that exposure of mice to stress can synergize with

IMQ effects and enhance the accumulation of pro-inflammatory

cytokines and tissue inflammation. This effect may be mediated, at

least in part, by an increase in the expression of SP (119), however

the exact molecular underpinnings have not been identified.

Nonetheless, these observations underscore the complexity and

context-dependency of neuroimmune interactions. Regardless of

the initiation events, in both the IMQ and C. albicans models, DC-

derived IL-23 activated skin-resident gdT-cells and led to an

enhanced local TH17 response and increased neutrophil influx

(26, 38). Similarly, in the KC-Tie2 model, in which psoriasiform

skin inflammation is driven by overexpression of the angiopoietin
FIGURE 5

Effects of select nociceptive neuropeptides on mononuclear phagocytes observed in vitro. Upward pointing arrows signify upregulation/activation,
downward facing arrows signify downregulation/inhibition.
FIGURE 4

Known in vivo effects of CGRP on myeloid cells. Upward pointing arrows signify upregulation/activation, downward facing arrows signify
downregulation/inhibition.
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receptor Tie2 in keratinocytes (120), surgical denervation reduced

skin pathology as well as DC numbers and IL-23 expression (121).

Exogenous administration of CGRP and SP was sufficient to reverse

this effect, and pharmacological blockade of CGRP and SP receptors

mimicked the effects of denervation (121). Also in a wound healing

model, IMQ-activated TRPA1+ nociceptors enhanced IL-23

upregulation in DCs, which, in turn, promoted tissue

regeneration (122), however, the role of CGRP or other

neuropeptides was not investigated. Further support for CGRP

having immuno-stimulatory properties comes from a recent study

in which pro-inflammatory cytokines were observed to accumulate

in murine skin after optogenetic activation of cutaneous nociceptors

in a CGRP-dependent manner (37). Similarly, repeated activation

of TRPV1+ nociceptors by means of a circumneural sciatic nerve

implant induced local inflammation and enhanced the

inflammatory response to local adjuvant injection (123).

Although neither study determined the exact cellular mechanism,

it appears likely that CGRP action on DCs was involved.

Several other studies have demonstrated that CGRP can also

have anti-inflammatory and immuno-modulatory effects on DCs.

For example, CGRP-deficient mice showed an increase in DC

infiltration into the skin after UV-B irradiation overexposure,

though whether this was due to a direct effect on DCs or

involvement of other cells was not established (124). In vitro, LCs

exposed to CGRP showed a decreased ability to present antigens to

T cells (125, 126), as did classical DCs, in which CGRP

downregulated MHC-II and CD86 expression, resulting in

decreased T-cell proliferation (127). Furthermore, CGRP

treatment was found to suppress TH1 differentiation in an in vitro

DC - T cell co-culture model, and RAMP1-/- mice showed an

enhanced TH1 response in a model of delayed-type hypersensitivity

(DTH) (128). Additionally, CGRP-pretreatment of antigen-pulsed

bone marrow-derived DCs (BM-DCs) in vitro prior to transfer into

naïve mice alleviated the allergic airway inflammation and

expansion of allergen-specific T-cells after a subsequent antigenic

challenge (129). The underlying mechanism remains unclear,

however, significantly increased levels of IL-10 were observed in

the t issue (129) . S imilar ly , in the context of 2 ,4 ,6-

trinitrochlorobenzene-induced contact hypersensitivity (CHS),

CGRP injected intradermally during the sensitization phase

inhibited the migration of Langerin+ dermal DCs to lymph nodes

by preventing upregulation of the chemokine receptor CCR7 (130).

On the other hand, T-helper 2 (TH2)-type responses induced by

LCs pretreated with CGRP in vitro were enhanced (117). Finally,

CGRP was reported to have chemo-attractant properties toward

immature but not mature monocyte-derived DCs in vitro (131), and

to alter the motility of airway mucosal DCs in living lung slices ex

vivo (132).

In summary, CGRP appears to have the ability to modify

functions of DCs in multiple ways, enhancing local immune

response within barrier tissues, while downmodulating the DCs’

ability to migrate to lymph nodes and to present antigens to T-cells.

Many observations, especially pertaining to the latter, however,

have only been made using exogenous administration of CGRP, and

it remains unclear whether release of CGRP from nociceptors

would be sufficient to induce comparable effects.
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AM and intermedin effects on DCs: In contrast to CGRP, much

less is known about the effects of AM and intermedin on DCs.

However, given the shared signal-transducing element of the CGRP

and AM receptors, it is reasonable to speculate that their effects may

be largely similar to those of CGRP. Indeed, in vitro, AM inhibited

LPS-induced maturation of BM-DCs, but it also induced a “semi‐

mature tolerogenic” phenotype in unstimulated cells, characterized

by intermediate upregulation of CD80, CD86, and indoleamine 2,3‐

dioxygenase (IDO) expression (133). Of note, AM-treated BM-DCs

were found to express AM themselves (133), however, the relevance

of this apparent feed-forward loop remains unclear.

SP effects on DCs: The effects of SP on DCs are generally

considered to be pro-inflammatory. In vitro, in GM-CSF-induced

BM-DCs, SP prevented apoptosis upon withdrawal of GM-CSF

through the PI3K-Akt signaling pathway (134), and enhanced T-

cell proliferation in a DC – T cell coculture (135). Additionally, SP-

treated in vitro generated DCs showed decreased IL-10 production

and induced an enhanced TH1 response when transferred in vivo

(136). Local administration of a synthetic analog of SP during a

gene-gun immunization also resulted in enhanced TH1 and

cytotoxic T-cell responses (137). Furthermore, pulmonary DCs

displayed increased motility when exposed to SP in vitro and

localized in proximity of SP+ nociceptive fibers in vivo. Ablation

of nociceptors in the lung resulted in a decreased number of DCs

and diminished infiltrates after pulmonary antigen challenge (115).

Whether this effect was mediated by SP or other nociceptor-derived

signals remains to be established. Finally, repeated stress exposure-

induced SP accumulation enhanced LC migration out of the skin to

the draining lymph-nodes, blocked production of the TH2 cytokines

IL-4 and IL-5, and enhanced the levels of TNFa and IFNg,
alleviating allergic skin inflammation (138). Nevertheless, there is

scant direct evidence for nociceptor-derived SP-mediated control of

DC functions under physiological conditions. One recent study

reported that the CD301b+ subset of skin DCs is activated by

TRPV-1+ nociceptor-derived SP in an allergen challenge model

(85). Such SP-activated DCs showed altered migratory properties

and enhanced priming of allergen-specific TH2 responses (85).

Interestingly, in this study CD301b+ DCs recognized SP

exclusively through the MRGPRA1 receptor and, in contrast to

previous studies (134, 136), the authors were unable to detect

expression of any SP receptors on other DC subsets in vivo (85).

In light of these observations, regulation of the SP receptor

expression in DCs emerges as an outstanding question important

for our understanding of the interaction between nociceptors and

DCs and their outcomes.

VIP and PACAP effects on DCs: The effects of VIP and PACAP

on DCs are context-dependent. On one hand, in in vitro generated

BM-DCs, VIP synergized with TNFa in inducing IL-12 and CD83

expression (139), and VIP/PACAP could also induce CD86

upregulation in immature BM-DCs and allow them to stimulate

T-cell proliferation and differentiation into TH2 effector cells (140,

141). On the other hand, LPS-activated BM-DCs treated with VIP/

PACAP showed impaired upregulation of CD80 and CD86, and

decreased ability to stimulate T-cell responses (140). Additionally,

BM-DCs that had been differentiated in the presence of VIP/

PACAP showed a tolerogenic phenotype, failed to upregulate
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CD80, CD86, and CD40, expressed high levels of IL-10, and

induced the expansion of regulatory T-cells in vitro and after

transfer in vivo (142). Similarly, in vitro treatment of antigen-

pulsed LCs with VIP prior to their adoptive transfer into

previously immunized mice ameliorated LC-dependent DTH

responses, possibly due to downregulation of IL-12 and IL-1b,
and upregulation of IL-10 (143). Indeed, when administered

exogenously in vivo, PACAP also suppressed the induction of

CHS by modulating Langerhans cell functions (144). However, a

more recent study has argued the opposite and showed that

denervated mice exhibited an attenuated CHS response, which

was improved by repeated intradermal injections of PACAP.

Mechanistically, PACAP injections increased the number of

dermal DCs that migrated to the draining lymph node and, in

vitro, the neuropeptide induced upregulation of CCR7 and CXCR4

on immature BM-DCs and improved their ability to migrate toward

CCL21 and CXCL12 (145). While it remains unclear whether these

in vitro and in vivo phenomena are connected, the findings suggest

that PACAP can control dynamics of DC migration.

Other modes of nociceptor-DC communication: TRPV1+

nociceptors have also been shown to be involved in anti-viral

responses. Through a yet-to-be defined mechanism, activation of

cutaneous nociceptors was sufficient to induce IL-27 expression by

dermal CD301b+ cells – a heterogenous group of myeloid cells that

includes cDC2s as well as monocyte-derived cells – which, in turn,

induced expression of anti-viral peptides in keratinocytes. Indeed,

skin explants from TRPV-1 deficient mice were more susceptible to

HSV infection than those from WT controls (146). Furthermore,

DCs isolated from skin-draining lymph nodes of HSV-infected

nociceptor-deficient animals were unable to efficiently prime

cognate T-cells. Importantly, addition of exogenous antigen

rescued the phenotype, indicating that there was no inherent

defect in the ability of DCs from nociceptor-depleted mice to

activate T-cells but rather that nociceptors control the ability of

DCs to acquire and/or process and present antigens to T cells (147).

In summary, nociceptors and nociceptor-derived neuropeptides

have the potential to control the trafficking and functions of DCs in

multiple ways and, in several cases, a single neuropeptide can

exhibit both pro- and anti-inflammatory properties. Many of

these observations, however, were only made in vitro or in the

context of exogenously administered synthetic neuropeptides.

Consequently, the extent to which they are relevant for the

interaction between nociceptors and DCs under physiological

settings often remains unclear. Nevertheless, a picture is

beginning to emerge, which suggests that nociceptors may control

DC functions in a context-dependent manner through a controlled

release of distinct neuropeptides. In particular, the recent in vivo

data argue in favor of a model in which nociceptors, depending on

the type of stimulus encountered, can skew immune responses

toward local TH17-like (26, 37, 38, 122) or adaptive TH2 type

responses (85). Whether the diverging responses are mediated by

different subsets of nociceptors or the same subset that can itself

respond differently to distinct stimuli is currently unclear.

Finally, we note that DCs engage in physical interactions with

nociceptors (26, 85), yet the effects of nociceptors that have been

described to date are, almost universally, attributed to soluble
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neuropeptides. Whether there is a role for the physical association

of the two cell types per se beyond ensuring that DCs are exposed to

high concentrations of the locally released neuropeptides remains to

be established.
3.2 Macrophages

Macrophages comprise a heterogeneous population of tissue-

resident myeloid cells with complex ontogeny. In adults, depending

on the tissue, macrophage subsets may have a variety of origins:

some are derived from yolk sac progenitors and maintained by self-

renewal, while others arise frommigratory monocytes or other bone

marrow derived hematopoietic precursors (148). The immune

functions of macrophages include phagocytosis and degradation

of cellular debris and foreign objects as well as cytokine production,

wound healing and, to a limited degree, antigen presentation (149).

Additionally, macrophages have non-immune roles that contribute

to the homeostatic functions of various organs including the brain

(150), heart (151), lung (152), and liver (153). Macrophages exhibit

significant plasticity and, based on phenotypic and functional

criteria, are often categorized as M1 or M2 type cells (154). M1

macrophages are characterized by the expression of the inducible

nitric oxide synthase (iNOS) as well as the costimulatory molecules

CD80 and CD86, and they exhibit pro-inflammatory properties.

Conversely, M2 macrophages express the mannose receptor,

CD206, and are mostly associated with anti-inflammatory, tissue

repair-promoting functions. While the M1/2 nomenclature is often

too simplistic to accurately capture the variability observed in

macrophages in vivo (155), it is, nevertheless, often used as a

convenient shorthand. Similar to DCs, macrophages are known to

associate with and be impacted by sensory (Figures 3–5) as well as

other types of neurons (156) in a variety of tissues including the gut

(157), eye (158), and skin (159).

CGRP effects on macrophages: The effect of nociceptive

neuropeptides on macrophages is among the earliest recognized

examples of nociceptor-immune cell communication. Indeed,

CGRP-mediated inhibition of the ability of macrophages to

produce H2O2 and to act as antigen-presenting cells in response

to IFNg was first reported in the late 1980s (160). Subsequent in

vitro studies have shown that CGRP decreased the expression of

other cytokines, including IL-12 and IL-1b, and upregulated IL-10

(161), LIGHT, and SPHK1 through a CREB-dependent mechanism

(75). Moreover, CGRP can regulate macrophage polarization in

vitro (162, 163), by inhibiting LPS-induced degradation of I-kB and

promoting IL-4-induced STAT6 phosphorylation, thereby favoring

the acquisition of the M2 phenotype (163). Accordingly, in recent in

vivo experiments CGRP promoted M2 accumulation in two models

of post-operative tissue regeneration (162, 164). Additionally, in a

b-glucan osteoinflammation model, CGRP released from NaV1.8+

nociceptors inhibited osteoclast-mediated bone resorption and

decreased TNFa and IL-6 levels (57). Ex vivo, CGRP also

decreased TNFa production by peritoneal macrophages after LPS

stimulation, and CGRP-treated mice were protected from lethal

endotoxemia after systemic LPS injection (60). In contrast to these

anti-inflammatory actions and similar to its pleiotropic effects on
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DCs (discussed above), CGRP can also elicit pro-inflammatory

responses in macrophages, at least in some settings. For example, in

the context of acute postoperative intestinal inflammation,

endogenously released CGRP potentiated the expression of the

proinflammatory cytokines IL-6 and IL-1b by peritoneal

macrophages (165). CGRP also enhanced phagocytic activity in

cultured peritoneal macrophages through a cAMP-dependent

mechanism (166) and improved their capacity to kill Leishmania

parasites (167). Interestingly, LPS-activated RAW264.7

macrophage cells in vitro (168), as well as macrophages invading

an injured nerve site in vivo (169), have been shown to produce

CGRP themselves, suggesting a regulatory mechanism to promote

tissue repair via an auto- or paracrine negative feedback loop.

AM and intermedin effects on macrophages: The effects of AM

and intermedin on macrophages are not well understood, however,

they appear similar to those of CGRP. AM has been shown to

decrease the production of TNFa by macrophages in vitro (170)

and of IL-6 and IL-8 by fallopian tube macrophages in vivo (171).

Similarly, intermedin can skew macrophage differentiation in white

adipose tissue toward the M2 phenotype (172). Conversely, in the

NR838 macrophage cell line, AM enhanced the secretion of IL-1b
and IL-6, while also reducing the expression of TNFa (173). Just

like CGRP, expression of AM has also been shown in the

RAW264.7 macrophage cell line as well as in peritoneal

macrophages (174) and in macrophages in atherosclerotic

plaques (175).

SP effects on macrophages: SP has long been known to induce

an oxidative burst in macrophages (176) and to enhance the

production of nitric oxide (NO) (177), TNFa, IL-1b, and IL-6

after LPS stimulation in vitro (178). Additionally, SP also decreased

the production of TGFb, a cytokine with anti-inflammatory

properties (179). SP has been implicated in the mediation of

immunological changes induced by stress. For example, in a

murine model of sound stress, the percentage of SP+ and CGRP+

sensory neurons innervating skin was increased (180) and this was

accompanied by an SP-dependent increase in MHC-II+

macrophage clusters and neurogenic inflammation (181).

Likewise, in a model of cold-water stress, SP released from

TRPV-1+ nerve fibers accumulated in the peritoneal cavity and

enhanced IL-6 production by peritoneal macrophages (182).

Conversely, in a model of spinal cord injury, intravenous

injections of SP decreased the abundance of M1 and increased the

abundance of CD206+ M2 macrophages at the site of the injury,

resulting in a decreased accumulation of IL-6 and TNFa, and an

increase in IL-10 (183). Similarly, in vitro, SP prevented IFNg-
induced M1 differentiation and activated the PI3K/Akt/mTOR

pathway, which promoted differentiation into M2-like tissue

repair-promoting macrophages. After adoptive transfer, SP-

induced M2 macrophages migrated to sites of tissue injury and

improved functional recovery (184).

VIP and PACAP effects on macrophages: VIP and PACAP have

been dubbed “macrophage deactivating factors” owing to their

ability to inhibit the expression of iNOS (101), proinflammatory

cytokines [TNFa (100), IL-6 (185), IL-12 (186)] and chemokines

[CCL2, CCL3 (187), CCL4, CCL5, CXCL2 and CXCL8 (IL-8)

(188)], and to increase the production of IL-10 (102) by
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macrophages in vitro. Furthermore, VIP and PACAP induced

rapid shedding of CD14 – an LPS-coreceptor – thus dampening

macrophage responses to bacterial endotoxin (189). Similar to their

effect on DCs, VIP/PACAP can, paradoxically, induce upregulation

of CD86 on immature macrophages and allow them to stimulate

TH2-biased adaptive immune responses (190) even though they

inhibit CD80 and CD86 upregulation in activated macrophages

(191). In vivo, exogenous administration of PACAP decreased

inflammatory responses by macrophages in CNS and ocular

inflammation models, and promoted neuroprotection (192, 193).

Conversely, in rat peritoneal macrophages in vitro, PACAP has

been reported to enhance phagocytosis and production of

superoxide anions (194) as well as their adherence and mobility

(195), while VIP inhibited TGFb production (196). Interestingly,

pre-treatment of macrophages with VIP and PACAP increased

their resistance to HIV infection in a PKA and PKC-dependent

manner (197, 198). Of note, while the in-vitro observations of

immunosuppressive qualities of VIP and PACAP have largely been

recapitulated in in vivo models in which exogenous neuropeptides

were introduced, whether and to what extent nociceptors can and,

indeed, do use these neuropeptides to impact macrophage functions

in vivo is less clear.

TAFA4 effect on macrophages: Because TAFA4 is mostly

expressed within the central nervous system (199), its potential

role in the periphery had previously been largely overlooked.

Recently, however, a Gai-interacting protein (GINIP)-expressing

subset of NaV1.8+ neurons was shown to express TAFA4

neuropeptide upon UV-irradiation (200). The nociceptor-derived

TAFA4 promoted IL-10 expression by macrophages and,

consequently, supported the survival of skin-resident anti-

inflammatory TIM4+ macrophages, resulting in reduced levels of

pro-inflammatory cytokines and improved tissue repair (200).

Other modes of nociceptor-macrophage communication: While

neuropeptide-dependent communication pathways have been at

the forefront of neuroimmunology research in general, non-

neuropeptide-dependent modes of communication between

nociceptors and macrophages have been described. One such

mechanism is the release of HMGB-1 from activated nociceptors.

In models of sciatic nerve injury and arthritis, nociceptor-restricted

HMGB-1 ablation resulted in decreased inflammation and

ameliorated pathology (201). While the HMGB-1-responsive cells

were not identified, involvement of macrophages, which express

HMGB-1 receptors (202) and play important roles in the

development of arthritis (203) appears likely. TRPV1+ nociceptors

were also implicated in macrophage accumulation, activation, and

ROS production in IMQ-induced psoriasiform skin inflammation.

In this model, CGRP and SP were responsible for the nocifensive

behavior, which was inhibited by treatment with neuropeptide

antagonists, but had no effect on the inflammatory response

(204), similar to the observations made for DCs in the same

model (26). Additionally, in the context of peripheral nerve

injury, DRG neurons have been shown to release exosomes

containing miR-21. Following phagocytosis of such vesicles, miR-

21 induced a pro-inflammatory phenotype in DRG-resident

macrophages, characterized by enhanced expression of iNOS,

TNFa, and IL-6, and downregulation of CD206 and Arginase
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(205). Finally, signaling through Toll-like receptors (TLR) and

myeloid differentiation factor 88 (MyD88) licenses nociceptors to

secrete the chemokine CCL2, resulting in enhanced macrophage

infiltration into the DRG (206). The role of such macrophage

infiltration in neuropathic pain and neuroinflammation is an

important topic of ongoing investigation and has recently been

reviewed elsewhere (207).

In summary, nociceptors can utilize multiple neuropeptide-

dependent and -independent means to exert control over

macrophages, and, in vivo, the macrophage response will likely

result from a combination of these signals. It is interesting to note

that while DCs and macrophages are developmentally and

functionally related and their responses to nociceptive

neuropeptides bear certain similarities, there appears to be a stark

dichotomy in the type of control that nociceptors exhibit over these

two cell types. In particular, currently available in vivo data suggests

that in the case of DCs, nociceptors impact the type of pro-

inflammatory immune response, as discussed in the previous

section. This is in contrast to macrophages, where the effect of

nociceptors appears to focus on controlling the balance between

pro- and anti-inflammatory, tissue repair-promoting phenotypes.
3.3 Monocytes

Monocytes are circulating phagocytes derived from the

common monocyte precursor (CMoP) that are broadly divided

into two distinct subsets – classical (also known as inflammatory)

and non-classical (a.k.a. patrolling) monocytes – which differ in

their phenotype, function and migratory properties. Under

inflammatory conditions, monocytes rapidly migrate into the

affected tissues where they can undergo diverse differentiation

pathways to acquire functional as well as transcriptional

properties of DCs or macrophages. Under steady-state

conditions, monocytes only emigrate into tissues in small

numbers and either help repopulate local macrophage niches or

remain in an undifferentiated state to fulfill homeostatic roles and

serve as local monocyte reservoirs (208, 209). Interestingly,

CGRP, SP, and VIP all exhibit chemotactic properties toward

monocytes in vitro (210) indicating that at least some monocytes

are equipped to sense sensory neuropeptides. Nevertheless, owing

to their migratory nature and paucity in uninflamed tissues,

direct effects of nociceptors on monocytes in vivo have not

been studied and our current understanding is limited to in

vitro effects of neuropeptides (Figures 3–5). Additionally, DCs

and macrophages derived from monocytes are rarely

differentiated from their bona fide counterparts during analyses

and, consequently, whether the effects that nociceptors have on

DCs and macrophages in vivo are also applicable to monocyte-

derived cells remains to be established.

Neuropeptide effects on monocytes: Similar to macrophages,

CGRP exerts anti-inflammatory effect on monocytes, including

inhibition of proliferation, antigen presentation, upregulation of

CD86 (but not CD80), and secretion of IL-12 p40, while at the same

time enhancing production of IL-10 in response to Staphylococcus

aureus in vitro (211). Similarly, human peripheral blood monocytes
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treated with VIP showed a reduction in the production of TNFa
(212) and IL-8 (213) with no effect observed on IL-10 production

(212). By contrast, SP exerts primarily pro-inflammatory effects on

monocytes. Indeed, several studies have noted that SP can induce

the release of IL-1b, TNFa, and IL-6 from monocytes (214, 215)

and TNFa from monocyte-derived macrophages (216). A

subsequent study, however, reported that human peripheral blood

monocytes are unable to respond to SP alone but rather that the

neuropeptide synergized with low doses of LPS and enhanced LPS-

induced IL-6 expression (217). Consequently, the authors

speculated that undetected low levels of LPS in tissue culture

media could have been responsible for the proposed cytokine-

inducing effects of SP and that SP, in fact, does not act on

unstimulated monocytes (217). The controversy has not been

fully resolved to date.

In summary, the in vitro effects of neuropeptides on monocytes

appear similar to their effects on other cells of the mononuclear

phagocyte system; however, the absence of in vivo data makes it

difficult to assess the pathophysiological relevance of this putative

communication pathway. One intriguing observation in that

context is the reported chemoattractant activity of neuropeptides

toward monocytes, which could suggest the possibility of

nociceptors controlling monocyte migration and/or localization

in tissues.
3.4 Polymorphonuclear granulocytes

Polymorphonuclear granulocytes derive from the shared

granulocyte-monocyte progenitor (GMP) in the bone marrow

and are characterized by the presence of granules in their

cytoplasm, which contain a variety of biologically active

molecules released upon cellular activation. Granulocytes are

often considered the first line of immune defense due to their

rapid recruitment to tissues in response to inflammatory stimuli

and their potent anti-microbial functions (12).

3.4.1 Eosinophils
Eosinophils play an important role in the pathology of allergic

and parasitic diseases as key effectors of TH2-type inflammation

(218). They respond to cytokines such as IL-5 and IL-13 by

proliferating and releasing a variety of cytokines (IL-13, IL-4, IL-

25, TNFa, GM-CSF), leukotrienes (C4, D4), prostaglandins, and

the contents of their cytotoxic granules, particularly, enzymatic and

nonenzymatic cationic proteins, as well as reactive oxygen species

(ROS) (218–220).

Although eosinophils also populate the intestinal (221) and

uterine mucosa at homeostasis (219, 222), they have been mostly

studied in the context of their recruitment in response to allergens

and parasites, especially in the airways and the skin. They localize

close to sensory as well as parasympathetic neurons both in animal

models of asthma and in biopsied lungs of asthma patients (223). In

prurigo nodularis, a chronic skin disease characterized by nodules

and intense itch, eosinophils are closely associated with CGRP+

nociceptive fibers (224) and in atopic dermatitis patients

eosinophils are more closely associated with nerve fibers than in
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healthy controls (225). Finally, although the identity of the neurons

was not determined in this context, close nerve-eosinophil contact

was also observed in the colon and Peyer’s patches of rats infected

with the parasite Fasciola hepatica (226). One way eosinophils are

postulated to interact with nociceptors is through the CCR3-

Eotaxin 1 (CCL11) chemokine pathway. In addition to Eotaxin-1,

VCAM-1 expression was also shown on DRG neurons in the

presence of nerve growth factor (NGF) in vitro (227), which

could support adhesion of eosinophils through VLA-4 (integrin

a4b1) (228).
Neuropeptide effects on eosinophils: Like other myeloid

leukocytes, eosinophils are also responsive to neuropeptides

(Figures 3, 4, 6) such as CGRP, SP, and VIP, each of which have

been shown to decrease IL-16 production by eosinophils in vitro

(229). When isolated and cultured with SP, Guinea pig eosinophils

released eosinophil peroxidase (EPO) (230), a cytotoxic protein

contained within “specific” cationic granules (231). The C-terminal

fragment of SP also triggers additional eosinophil responses in vitro,

including the release of another component of the specific granules,

the eosinophil cationic protein (ECP) (232), generation of

superoxide (232), and inhibition of apoptosis (233). Additionally,

equine eosinophils were shown to respond to SP by increased

adherence, migration, and superoxide production, although the

authors noted that only relatively high SP concentrations were

able to elicit these effects (234). SP is also considered an eosinophil

chemoattractant (233, 235–237) and intradermal injection of the

neuropeptide led to eosinophil recruitment in human volunteers,

while CGRP and VIP injections did not (235). Similarly, intranasal

SP administration following allergen exposure led to increased

eosinophil recruitment in patients with allergic rhinitis (238).

Finally, in rat trachea venules, administration of SP increased the

numbers of adherent eosinophils in an NK1R-dependent manner

(236). However, it is unclear in these experiments whether SP acted

directly on eosinophils or rather on endothelial cells to upregulate

adhesion molecules [for a review see (239)].

In vitro studies with eosinophils from allergic individuals

suggest that both CGRP and SP can enhance eosinophil

migration toward other chemoattractants, such as leukotriene B4

(237), platelet-activating factor (237, 240), or IL-5 (240). CGRP by

itself can induce human eosinophil chemotaxis – directed migration

along a concentration gradient, while VIP stimulates chemokinesis
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– random, directionless motility – by signaling via VPAC1 but not

VPAC2 (241).

Only a few studies have addressed the effects of nociceptors on

eosinophil recruitment and functions in vivo: TRPA1-KO mice, which

exhibited lower levels of SP, CGRP, and neurokinin A had decreased

levels of IL-13, Eotaxin-1, CCL2, RANTES, and IL-5 after an allergic

challenge. This phenotype was correlated with a IL-5 decrease in the

numbers of eosinophils in the bronchioalveolar lavage fluid (BALF)

(242). Similar findings were made in a model of airway inflammation

in mice genetically lacking all NaV1.8-expressing nociceptors and mice

that were administered QX-314 – a charged derivative of lidocaine and

a potent sodium channel blocker, which silences the electrical activity

of nociceptors. These mice had fewer eosinophils in their airways and

lower levels of IL-5, IL-4, Eotaxin, and TNFa in the BALF (27).

Reciprocally, capsaicin treatment, which induces the activation of

TRPV1+ nociceptors, led to increased eosinophil recruitment (27).

Similarly, in a model of allergic asthma, ablation of TRPV1+ neurons

prevented development of airway hyperreactivity and broncho-

constriction phenotypes (243), which are known to be in part

mediated by eosinophil major basic protein (MBP) (219, 244).

Notably, unlike the observations made in mice lacking NaV1.8+

nociceptors (27), no overall changes in the immune cell infiltrate

were observed in mice devoid of TRPV1+ nociceptors (243).

Conceivably, these disparate results might be due to different

populations of nociceptors being targeted (NaV1.8+ vs TRPV1+) or

differences in the experimental models themselves. Such differences

notwithstanding, a TRPA1 antagonist has shown efficacy in preclinical

models of asthma, and has recently entered phase 1 human clinical

trials (245), providing an important proof of concept for targeting

peripheral neuroimmune interactions in clinical settings.

Taken together, nociceptive neuropeptides have the ability to enhance

recruitment and chemotaxis of eosinophils under inflammatory settings

and SP in particular can induce eosinophil degranulation and ROS

generation. In light of the fact that many neuropeptides can be

produced by cells other than nociceptors, the extent to which

neuropeptides released specifically by activated nociceptors impact

eosinophil functions in vivo, however, remains largely unclear.

3.4.2 Basophils
Basophils, which account for ~1% of the blood leukocytes, are

recruited to sites of TH2-mediated inflammation and are often
FIGURE 6

Effects of select nociceptive neuropeptides on polymorphonuclear granulocytes observed in vitro. Upward pointing arrows signify upregulation/
activation, downward facing arrows signify downregulation/inhibition.
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regarded as the “blood mast cells” (246, 247). It is becoming

increasingly clear, however, that basophils have non-redundant

functions, especially in their response to haptens and peptide

antigens (248). In vitro, nociceptor neuropeptides secretoneurin

and SP, signaling through NK1R, showed chemoattractant

properties comparable to the N-formyl peptide, fMLP, – a known

granulocyte chemoattractant – and LPS (249). In mice,

intraperitoneal injection of SP led to a marked increase in blood

basophil numbers (250). In addition, basophils from patients with

chronic spontaneous urticaria had higher expression of NK1R and

of SP itself (250). Importantly, the threshold for SP-induced

histamine release from such basophils was decreased compared to

basophils from healthy subjects (250).

In summary, while it appears that SP enhances the pro-

inflammatory functions of basophils (Figures 3, 4, 6) similarly to

what has been described for the other granulocytes (251), our

understanding of the neuronal control of their functions is in

its infancy.

3.4.3 Neutrophils
Neutrophils are short-lived, sentinel immune cells that

comprise 50-70% of all circulating leukocytes in humans and 10-

25% in mice (252). As the first responders to pathogen entry, these

myeloid cells are equipped with a plethora of effector functions

aimed at eliminating pathogens. Specifically, neutrophils

phagocytose bacteria, release proteases and oxidants, form

neutrophil extracellular traps (NETs), and communicate with

other immune cells through cytokine release (253). Importantly,

neutrophil activation also has the potential to cause significant

collateral damage to the host tissues and, as such, their functions are

tightly regulated. Nociceptors have been reported to form close

contacts with neutrophils that have emigrated into tissues (28), and

nociceptive neuropeptides in particular have been shown to

profoundly influence neutrophil migration and functions both in

vitro and in vivo (Figures 3, 4, 6).

Multiple studies have utilized various depletion or activation

techniques to test the impact of nociceptors on neutrophils in vivo.

These studies usually focus on whether neutrophil recruitment and

activity are affected by assessing the expression of adhesion

molecules on blood neutrophils, determining neutrophil numbers

in the tissue, as well as evaluating the activity of whole tissue

myeloperoxidase (MPO), a peroxide-degrading enzyme released

during neutrophil degranulation. Although often presented as such,

whole tissue MPO activity as a proxy of neutrophil-mediated

effector functions has important limitations as it does not account

for the production of MPO, albeit at lower levels, by cells other than

neutrophils (254). Only a few studies used ex-vivo assays to measure

neutrophil-specific MPO and direct antimicrobial properties by co-

incubating neutrophils with bacteria in the presence of relevant

neuropeptides or nociceptors. Overall, an immunosuppressive effect

of nociceptors on neutrophils has been observed. Notably, in rats,

electrical stimulation at intensities that activate noxious C fiber

afferents led to a reduced accumulation of neutrophils in a model of

bradykinin-induced knee joint inflammation (255). While total

blood neutrophil numbers remained similar, a marked decrease in

L-selectin (CD62L) positive neutrophils in the nociceptor-activated
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group was reported. Additionally, in a laminar flow assay using

blood neutrophils isolated from rats after noxious stimulation, a

significant reduction in the number of rolling and tethering cells

was observed (255), suggesting that nociceptive fiber stimulation

might downmodulate the expression of neutrophil adhesion

molecules (256) in parallel with its effects on endothelial cells

(239). Building on these original observations and using

complementary loss-of-function models, further studies have

arrived at similar conclusions: In an LPS-induced subacute airway

inflammation model, depletion of TRPV1+ nociceptors resulted in a

higher lung MPO activity and IL-1b secretion (257). Likewise, in a

Staphylococcus aureus mouse model of lethal pneumonia,

neutrophil recruitment and functions were suppressed by

TRPV1+ nociceptors, as mice lacking TRPV1+ fibers exhibited a

higher percentage of neutrophils in the lungs 6h post infection, a

lower bacterial burden and better survival (25). Accordingly, an

increase in crawling of neutrophils in the subpleural vascular bed

was observed using intravital microscopy in the TRPV1+

nociceptor-ablated mice (25).

Further studies have also explored the role of nociceptor-

neutrophil communication within the gastrointestinal tract in

dextran sodium sulfate (DSS) and trinitrobenzene sulfonic acid

(TNBS) induced colitis models (258–261). Strikingly, ablation of

TRPV1+ fibers (258), as well as TRPV1 antagonism (259, 260)

resulted in a lower disease score, accompanied by lower tissue MPO

activity (258–260). Conversely, however, another study has

reported that TRPV1 agonism through daily administration of

low doses of capsaicin during DSS colitis in WT rats led to a

lower tissue MPO activity (261). While it is possible that such

treatment led to the desensitization of the TRPV1+ fibers (262),

these results indicate that the effects of nociceptors on neutrophils

might not be straightforward.

CGRP effects on neutrophils: CGRP acting through the

RAMP1-Calcrl receptor is known to have an immunosuppressive

effect on neutrophils (25, 263–266). In vitro, CGRP prevented LPS-

induced upregulation of CD11b on human neutrophils (263) while,

in vivo, mice lacking RAMP1 exhibited increased infiltration of

CD11bHi neutrophils into the peritoneal cavity and improved

antibacterial defense in the early stage of septic peritonitis (265).

After myocardial infarction, TRPV1-KO mice showed increased

number of recruited neutrophils and higher pro-inflammatory

cytokine concentrations (IL-6, TNFa) in the heart, which

correlated with lower levels of CGRP and were reversed by

exogenous CGRP administration (266). Similarly, in a mouse

model of Streptococcus pyogenes skin infection, TRPV1+

nociceptor-derived CGRP suppressed neutrophil recruitment and

functions (58). More recently, analogous observations have also

been made in a model of urinary tract infection with uropathogenic

E.coli, where nociceptor depletion as well as direct CGRP

antagonism improved recruitment and functions of neutrophils to

the urinary bladder, and resulted in improved bacteria clearance

(267). Also in vitro, DRG neurons decreased clearance of S.

pyogenes by bone marrow neutrophils, as did CGRP treatment

alone, albeit to a lower degree, suggesting a possible involvement of

other nociceptor-derived factors – possibly AM or Intermedin – in

suppressing neutrophil antimicrobial activity in vivo. Finally, the
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MPO activity of neutrophils incubated with S. pyogenes was also

decreased by CGRP in a concentration-dependent manner (58).

SP effects on neutrophils: Consistent with the effects of SP on

other myeloid cells, it also amplifies the pro-inflammatory activities

of neutrophils. For example, intravenous injection of SP led to

increased neutrophil adhesion in rat trachea venules in an NK1R

dependent manner (236). Similarly, after intradermal injection of

SP in human volunteers, increased numbers of neutrophils in the

lumen of dermal venules and the interstitium were observed (235).

This phenomenon, however, is likely due to the effects of SP on

endothelial cells, which are known to respond to SP by

transcriptional upregulation of E-selectin and translocation of P-

selectin from Weibel-Palade bodies to the cell surface (235), both

adhesion molecules that are critical for the recruitment of blood-

borne neutrophils. Nonetheless, direct effects of SP on neutrophils

have also been reported, albeit only in vitro (232, 268–270). Indeed,

SP, through NK1R signaling, enhances neutrophil survival by

inhibiting caspase 3-mediated apoptosis (269) and induces

superoxide generation (232, 268). Additionally, incubation of

human neutrophils with SP resulted in phosphoinositide

hydrolysis, an increase in intracellular calcium, activation of

NADPH oxidase, and production of reactive oxygen species as

well as enhanced exocytosis of azurophilic and specific granules

after cytochalasin B treatment (268). Finally, SP has been shown to

enhance fMLP-mediated production of arachidonic acid

metabolites LTB4 and 5-HETE by human neutrophils, as well as

to increase antibody-dependent cellular cytotoxicity (271).

VIP and PACAP effects on neutrophils: The neuropeptides of the

VIP/PACAP family seem to have an immunosuppressive effect on

neutrophils. In a model of LPS-induced septic shock, VIP/PACAP

administration led to lower levels of liver and intestinal MPO activity in

a PAC1-dependent manner (272). Furthermore, intratracheal

administration of VIP and PACAP analogs prior to IL-1b treatment

resulted in a decreased neutrophil infiltrate in the BALF (273), and

intraperitoneal administration of recombinant VIP decreased MPO

activity in Aspergillus fumigatus-infected cornea (274).

In summary, the in vivo studies imply that the principal effect of

nociceptor activation is attenuation of neutrophil-mediated
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inflammation, at least in the limited number of experimental

systems employed to date. Indeed, neutrophil exposure to several

neuropeptides that can be released by nociceptors, particularly

CGRP and VIP/PACAP, results in suppression of effector activity.

However, at least one nociceptor-derived neuropeptide, SP, can

exert potent pro-inflammatory nociceptor-derived activity on

neutrophils. While this has only been described in vitro and

evidence for such effect in vivo is currently lacking, it nevertheless

hints at an unappreciated degree of complexity in the interaction

between nociceptors and neutrophils.
3.5 Mast cells

Mast cells (MCs) densely populate barrier tissues and often

localize within close proximity of nerve endings (275) and are well

known to engage in bi-directional communication with nociceptors

(276, 277). MCs play a central role in allergic reactions where,

following IgE-mediated crosslinking of Fcϵ receptor I (FcϵRI), they
rapidly exocytose storage granules containing mediators such as

heparin, histamine, proteases, and cytokines. Granule exocytosis

initiates further downstream signaling events that lead to vascular

leakage, recruitment of various immune cells, and other

components of allergic inflammation (278). Additionally, certain

mast cell mediators, in particular histamine and serotonin are

potent pruritogens and activate nociceptive fibers that transmit

the sensation of itch (279). Neuropeptide-mediated activation of

MCs (Figures 3, 4, 7) is independent of IgE/FcR signaling and

results in spatially and temporally distinct patterns of degranulation

(280) and release of unique combinations of mediators. Specifically,

upon IgE-induced activation, MCs secrete larger and more

heterogeneously shaped granules that are able to drain to lymph

nodes and influence adaptive immune responses (281) whereas MC

activation by neuropeptides induces rapid secretion of small

secretory granules that are either not transported to or fail to be

retained in draining lymph (280). Additionally, neuropeptide

stimulation leads to higher production of diverse pro-

inflammatory chemokines, including CCL2 (MCP-1), CCL5
FIGURE 7

Effects of select nociceptive neuropeptides on mast cells observed in vitro. Upward pointing arrows signify upregulation/activation, downward facing
arrows signify downregulation/inhibition.
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(RANTES), CXCL10 (IP-10), and CXCL8 (IL-8) (282) but limited

release of prostaglandin E2 and VEGF (280). These distinct patterns

of degranulation and mediator release, potentially along with other,

yet to be described molecular features of neuropeptide-mediated

MC activation, lead to a more rapid development of vascular

leakage but more transient local inflammatory reactions in

comparison to anti-IgE-induced activation (280).

MCs in different tissues display marked differences in their

phenotype and function, including their neuropeptide receptor

expression, granule composition, and cytokine production (283).

Mucosal MCs (MMCs) are predominantly found in the gut and

contain granules that consist of chondroitin sulfate and either

tryptase (in human) or chymase only (in mouse). In contrast,

connective tissue MCs (CTMCs) are found in the skin, intestinal

submucosa, myocardium (284), nasal epithelium (285), and

peritoneum and contain granules that mainly consist of heparin

proteoglycans and both tryptase and chymase. Notably, these

phenotypic differences have been utilized to generate mouse lines

that allow for selective deletion and functional perturbation of

either MMCs or CTMCs (286, 287). Although CTMCs and

MMCs are ontogenetically distinct (288), they can be induced by

the tissue microenvironment to take on phenotypic and functional

features of the other subtype (289, 290). Thus, in light of the

growing evidence of tissue microenvironment playing a role in

regulating MC-nociceptor communication, we will discuss the effect

of nociceptor act ivat ion on MCs according to their

tissue localization:

Nociceptor interactions with CTMCs: SP appears to be the main

nociceptive mediator that activates CTMCs, resulting in the release

of histamine, proteases, and various chemokines that lead to further

innate immune cell recruitment. Although there is some evidence

for NK1R expression on human nasal mucosal MCs (291), rat

cardiac MCs (292), and dermal MCs within eczematic skin lesions

(293), MRGPRB2/X2 appears to be the main receptor for SP in

murine and human CTMCs (84). Among the CTMCs, dermal MCs

are perhaps the best-characterized population. In the context of

tissue damage, SP signals through MRGPRB2/X2 to activate dermal

MCs, result ing in their degranulation and release of

proinflammatory cytokines (TNFa, GM-CSF) and chemokines

(CXCL8, CCL2, 3, and 4) leading to neutrophil recruitment to the

site of injury and development of pain hypersensitivity (83). Indeed,

injection of staphylococcal enterotoxin B in combination with

Dermatophagoides farinae extract (house dust mite allergen)

activates TRPV1+ nociceptors to the release of SP, leading to MC

degranulation, cytokine production, influx of eosinophils and

neutrophils, and TH2-type skin inflammation (82).

Interestingly, unlike activation through the canonical IgE/FcϵRI
pathway, SP/MRGPRB2-mediated degranulation results in the

release of more tryptase and less histamine and, subsequently,

excites the non-histaminergic itch sensory neurons (294). The

mechanistic regulation and long-term functional consequence of

favoring tryptase release remain to be characterized. Nevertheless,

given the ability of tryptase to degrade substrates such as cytokines

and neuropeptides (295), it is tempting to speculate that favoring

tryptase over histamine could allow for a more controlled pattern of

immune activation and rapid return to tissue homeostasis.
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In addition to neurogenic inflammation, MRGPRB2/X2-

mediated MC activation also facilitates protection against

pathogens. In mice lacking functional MRGPRB2, neutrophil

recruitment to and clearance of subcutaneously inoculated S.

pyogenes were impaired (285). Similarly, in a model of S. aureus

skin infection, MRGPRB2-mediated CTMC degranulation resulted

in the release of TNFa, GM-CSF, CXCL8, CCL2, and CCL3 and

subsequent recruitment of bacteria-clearing neutrophils and wound

healing-promoting CD301b+ DCs (296). Instead of SP, however,

mastoparan – a different MRGPRB2 agonist – was used to induce

CTMC activation. Therefore, whether S. aureus infection can

physiologically result in the release of SP sufficient to induce

CTMC activation in a similar fashion remains to be directly

demonstrated. Lastly, in addition to mediating degranulation, SP

can also modulate TLR2 expression on MCs (297), which may alter

the MC response to subsequent bacterial exposure.

Interestingly, a recent study has shown that a non-peptidergic

subset of MrgprD+ (Mas-related G-protein-coupled receptor D)-

expressing cutaneous sensory afferents modulates gene expression

in CTMCs by the release of glutamate (298). Notably, MRGPRB2

was among the downregulated genes, and activation of MrgprD+

neurons, which are themselves maintained by skin-resident

Langerhans cells, was sufficient to suppress dermal MC

responsiveness. Conversely, depletion of the MrgprD+ neurons

resulted in increased susceptibility to Mrgprb2-mediated irritant

dermatitis (298) suggesting that MrgprD+ neurons may be

responsible for setting an overall tone of CTMC responses in

the skin.

In comparison to the skin, less is known about the effects of

nociceptive neuropeptides on CTMCs residing in other tissues. In

vitro studies have demonstrated that SP induces IL-6, TNFa (299)

and histamine release from rat peritoneal MCs (300) and histamine

from cardiac MCs (292), as well as serotonin and TNFa release

from murine peritoneal MCs without a concomitant release of

histamine (301, 302). In vivo, intraperitoneal inoculation of

vancomycin-resistant E. faecium into mice with dysfunctional

MRGPRB2 resulted in increased bacterial loads compared to

controls (285). Based on what has been described for dermal

MCs, loss of SP-mediated MC-activation and subsequent defect

in the recruitment of bacteria-clearing neutrophils could be the

mechanistic underpinning of this phenotype, however, direct

experimental evidence is currently lacking. Similarly, murine

nasal epithelial MCs also express MRGPRB2, and its dysfunction

during nasopharyngeal infection with S. pneumoniae resulted in

decreased TNFa levels in the nasal lavage fluid (NLF), decreased

recruitment of neutrophils and MCs to the nasopharynx, and

impaired bacterial clearance compared to control animals (285).

Interestingly, in the human nasal mucosa, MCs express NK1R and

NK2R but not MRGPRX2 and the functional effect of SP has not

been elucidated (291). Overall, more work is necessary to better

understand the effect of SP-MRGPRB/X2-mediated CTMC

activation within different tissue microenvironments, especially

given that SP-MC signaling is implicated in both pathological

neurogenic inflammation as well as protection against pathogens.

Molecular mechanisms and functional consequences of CTMC

activation by neuropeptides other than SP are poorly understood.
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CGRP has been shown to induce degranulation and release of

serotonin (301) and histamine (303) in peritoneal and dermal MCs

and, in a model of contact hypersensitivity (CHS), intradermal

injection of CGRP induced release of TNFa from MCs, which

resulted in reduced LC density and, consequently, suppressed the

CHS phenotype (304). Thus, contrary to other myeloid cells, the

effect of CGRP on MCs appears to be preferentially pro- rather than

anti-inflammatory. Similar to CGRP, AM was able to induce MC

degranulation and histamine release as well as upregulation of

VEGF and MCP-1, and increased MC motility in vitro (305).

However, MC activation by nociceptor-derived AM has not been

demonstrated in vivo. Interestingly, MCs are a prominent

component of solid tumors and, in the tumor microenvironment,

can be readily activated by tumor cell-derived AM, resulting in IL-

17A release and enhanced tumor growth (306). Lastly, VIP has been

shown to induce degranulation and histamine release in rat

peritoneal MCs (300) but, paradoxically, suppresses stress-

mediated MC degranulation in the testes (307).

Nociceptor interactions with MMCs: Compared to CTMCs,

much less is known about neuropeptide-mediated control of MMCs

(308). Unlike CTMCs, MMCs do not express MRGPRB/X2 (84)

and the expression of NK1R has long been controversial (309).

Recent work in human and guinea pigs, however, has demonstrated

that NK1R is expressed on intestinal MCs and mediates SP-induced

degranulation and release of histamine and protease II (310). In

addition to SP, rodent, but not human (309) MMCs also respond to

CGRP and VIP by degranulation (311). Interestingly, in murine

models of food allergy (312) and intestinal parasitic infection with

Nipppostrongylus brasiliensis and Schistosoma mansoni (313), a

significant increase in the density of CGRP+ fibers and closely

associated MCs was observed in the intestinal mucosa. Similarly,

patients with irritable bowel syndrome have an increased number of

degranulated MCs localized in close proximity to nerve fibers, and

an increase in mucosal tryptase concentrations correlates with the

severity and frequency of abdominal pain/discomfort (314).

Overall, these observations suggest that the neuropeptide-MC

signaling axis plays important, albeit poorly understood roles in

the biology of MMCs and their functions in inflammation and

protection against pathogens within the intestinal mucosa. Lastly, in

a model of SP-induced cystitis in the urinary bladder, MMC-

mediated tissue edema and neutrophil infiltration were not

dependent on NK1R signaling (315), suggesting that bladder

MMCs might express another, yet to be identified SP receptor.

In contrast to other tissues, the lung is uniquely populated by

both MMCs and CTMCs, with MMCs being the prevailing type in

bronchi, bronchioles, and alveolar parenchyma and CTMCs along

the pulmonary vessels and pleura (316). Unlike their murine

counterparts (84), human lung MCs do not express MRGPRX2

and, consequently, do not degranulate in response to SP at steady-

state (317). However, both the number of MRGPRX2+ MCs and

overall levels of MRGPRX2 expression were increased in lung

biopsies from patients who had died from asthma (318),

suggesting that MRGPRX2 may be upregulated in MCs within

the inflamed airway microenvironment and potentially play a

functional role in airway hyperresponsiveness. Indeed, SP

concentration was also elevated in the BAL and sputum of
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asthmatic patients (319) and SP can induce degranulation of MCs

isolated from human BAL (320). Nevertheless, further work is

necessary to directly implicate SP-MRGPRB/X2 in the

progression of asthma as well as to explore the effect of other

neuropeptides on lung MC functions.

Finally, non-barrier, non-mucosal tissues, including the CNS,

also contain MCs that are highly responsive to neuropeptides. The

dural meninges are densely populated by MCs, which have been

reported to form close contacts with nociceptors (321) and respond

to SP, VIP, and CGRP by degranulation and histamine release

(322). Nevertheless, most in vivo work has shown CGRP to be the

predominant neuropeptide that mediates nociceptor-MC signaling

under pathological conditions, including migraine (323) and post-

concussion pain (324). Indeed, epidural infusion of CGRP in rats is

sufficient to induce MC degranulation (325). Unlike the rat MCs,

however, human meningeal MCs do not appear to express the

CGRP receptor (326), and it is unclear whether they can respond to

CGRP at all. MCs are also found within specific areas in the

underlying brain parenchyma, such as the corpus striatum. Upon

systemic VIP administration, these MCs become activated but do

not show classic degranulation patterns (327), and their

physiological role remains a mystery.

Overall, work thus far has demonstrated important functions of

neuropeptide-mediated MC activation in the context of neurogenic

inflammation and protection against pathogens in barrier and non-

barrier tissues. However, heterogeneity between MC populations

present in various tissues remains a confounding factor and a more

detailed understanding of how the nociceptor-MC signaling axis

functions in tissue-specific immune surveillance is needed. In

particular, understanding the function of nociceptor-MC

communication in response to pathogens is of outstanding

interest, given the MCs’ strategic localization at the host-

environment interface , and a growing body of work

demonstrating MCs to play critical roles in protection against

infection (285, 328).
4 Discussion

Although the concept of neuroimmunology in peripheral

tissues is not new, progress in our understanding of the

operational paradigms that dictate the functional outcomes of

such interactions has long been hindered by limitations in the

availability of experimental tools and our insufficient knowledge of

both the immune and nervous systems per se. However, recent

progress in multiple areas of scientific inquiry and a convergence of

these hitherto separate areas have allowed at least some of these

interactions to come into focus. While the field in many ways is still

in its infancy, it appears likely that significant headway will be made

in years to come.

It is often tempting to over-simplify the effects of nociceptors

and neuropeptides on immune cells and categorize them as either

pro- or anti-inflammatory. However, we must take into account the

interconnectedness and context-dependency that the actions of

both the immune and nervous system exhibit. A revealing case in

point is the effect of nociceptor-derived CGRP on neutrophil-
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mediated immune responses. When directly applied, CGRP appears

to have potent anti-inflammatory properties, inhibiting neutrophil

migration as well as their effector functions. However, through its

actions on dendritic cells, CGRP can also enhance the local TH17

response, resulting indirectly in an increased production and influx

of neutrophils and an enhanced inflammatory response.

Teleologically, it is interesting to ponder why the immediate

effects of CGRP would prevent neutrophil recruitment if,

ultimately, the neuropeptide orchestrates a chain of events that

leads to the opposite result. This might be perceived as particularly

puzzling given that pain (and concurrent release of neuropeptides)

often accompanies barrier breaches, where an increased risk of

pathogen invasion should favor the evolution of mechanisms that

promote a preemptive recruitment of bacteria-clearing neutrophils.

Nevertheless, it is important to take into account the potentially

destructive effects that neutrophils can have in inflamed tissues.

Indeed, if the threat from a wound is minimal, curtailing of

neutrophil accumulation and activation could prevent further

tissue damage and favor tissue repair and faster return to

homeostasis. On the other hand, larger or infected wounds are

likely to cause sustained activation of local immune cells such as the

DCs and macrophages alongside the release of CGRP, which

together signal a need for a strong immune response, likely

overriding the effect that CGRP alone might have on neutrophils.

Thus, nociceptors appear to have the ability to fine-tune the

immune response in tissues, further enhancing it where needed,

while also preventing an excessive activation in situations where it

is not.

While it is increasingly clear that nociceptors have the ability to

change the parameters of immune responses through the secretion of

neuropeptides, the regulation of the processes remains enigmatic. In

particular, multiple neuropeptides that often have opposing effects are

known to be expressed in the same nociceptive fibers. Consequently, it

appears likely that neuropeptide release patterns in vivo should be

tightly controlled, similarly to what has been described for molecular

communication in other branches of the nervous system (329, 330). To

that end, it is conceivable that different modalities of activation could

result in a spatially and/or temporally distinct pattern of release of

distinct neuropeptides from the same fiber. Similar observation have, in

fact, beenmade in rat vagal sensory neuron cultures, in which release of

different ratios of CGRP and SP was observed depending on the

challenge modality (331). At the same time, at a single-cell/fiber level,

nociceptors are known to be non-uniform in their expression of

neuropeptides (332, 333). Consequently, it is conceivable that subsets

of nociceptors that are distinct in their specificity for various stimuli or

their physiological location might inherently show biased patterns of

neuropeptide expression to achieve a similar effect. Clearly, further

work is needed to establish if and how differential neuropeptide release

in vivo is controlled and how it impacts immune responses.

Additionally, while volume transmission (diffusion-driven effect at a

distance) is an accepted mechanism of neuropeptide-dependent

communication (334), the scale at which neuropeptide gradients

form and the distances at which they can act on various immune

cells within tissues remain poorly defined.
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It is of note that several feed-forward loops exist in which

immune cells exposed to nociceptive neuropeptides are prompted

to express the neuropeptides themselves (133, 168, 169, 174, 175).

While the functional relevance of such phenomenon has not been

investigated, it appears to be an example of a signal-amplifying

feed-forward loop. Historically, neuropeptides were thought to be

synthesized exclusively in the cell bodies of nociceptors and

transported through axons within vesicles to the peripheral nerve

endings where they get released (335). More recent studies have,

however, demonstrated intra-axonal synthesis of at least some

neuropeptides (336), and it remains unclear which of the

mechanisms is more important within nociceptors’ axons at the

steady state (337). Nonetheless, in either scenario, it appears likely

that the amount of neuropeptides readily available in the termini of

nociceptors is limited, as the transport along axons has been argued

to take hours to days (338), and the scale of local proteosynthesis

inside axons is inherently limited by the comparatively small

volume of cytoplasm. On the other hand, immune cells have the

ability to infiltrate tissues in large quantities, ramp up protein

production when activated, and to move within the tissue,

perhaps providing a raison d’et̂re for such a feed-forward

amplifier. Additionally, tissue damage will inevitably result in

physical disruption of local nociceptor fibers and hence a possible

transient loss of local neuronal neuropeptide sources. It is thus

conceivable that myeloid cells present in the affected tissue could

provide a substitute source until nociceptor innervation is restored.

Experimental evidence in the form of immune cells genetically

deficient in the neuropeptides of interest will be necessary to test

these ideas.

As discussed throughout this review, to this day, with only a few

exceptions, neuropeptide release has widely been considered the

main, if not the only, mechanism by which nociceptors exert

control over immune cells. Nevertheless, other modalities of

interaction could exist, e.g. interactions of surface molecules,

direct coupling through gap junctions or tunneling nanotubes,

production of secretory vesicles, or release of non-neuropeptide

mediators and neurotransmitters. Investigation of such alternative

modes of communication could provide worthwhile insights into

the nature of the neuroimmune interactions and shed more light on

the intricate network of communication in which nociceptors and

immune cells engage. Finally, while here we focused specifically on

the means by which nociceptors impact on the functions of myeloid

immune cells, it is important to stress that the communication

between nociceptors and the immune system is bidirectional.

Indeed, many of the effects that immune modulators have on

nociceptor functions are known and have been reviewed recently

(339, 340).

In summary, while a growing body of literature pertaining to

the interaction between nociceptors and myeloid cells exists, many

outstanding questions remain. In particular, a number of studies

investigated the effects of nociceptive neuropeptides on immune

cells in isolation or after injecting a neuropeptide into animals,

while others have explored the effect of global nociceptor ablation.

Although such studies have generated important insights, we are
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largely lacking a mechanistic understanding of how nociceptor-

derived neuropeptides act at the single cell or tissue level. New

experimental strategies, such as inducible nociceptor-specific

ablation or induction of neuropeptide expression and/or

immune cell-specific ablation of neuropeptide receptors could

potentially address these questions in the near future.

Furthermore, while the interactions between nociceptors and

certain cell-types, such as macrophages and mast cells have

received much attention, others, such as monocytes or basophils

remain largely unexplored.
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Hanč et al. 10.3389/fimmu.2023.1127571
77. Ding W, Wagner JA, Granstein RD. CGRP, PACAP, and VIP modulate
Langerhans cell function by inhibiting NF-kappaB activatioN. J Invest Dermatol
(2007) 127:2357–67. doi: 10.1038/sj.jid.5700858

78. McGillis JP, Miller CN, Schneider DB, Fernandez S, Knopf M. Calcitonin gene-
related peptide induces AP-1 activity by a PKA and c-fos-dependent mechanism in pre-
b cells. J Neuroimmunol (2002) 123:83–90. doi: 10.1016/s0165-5728(01)00484-2

79. Kiriyama Y, Murayama T, Tokumitsu Y, Nomura Y. Protein kinase a-dependent
IL-6 production induced by calcitonin in human glioblastoma A172 cells. J
Neuroimmunol (1997) 76:139–44. doi: 10.1016/s0165-5728(97)00044-1

80. Severini C, Improta G, Falconieri-Erspamer G, Salvadori S, Erspamer V. The
tachykinin peptide family. Pharmacol Rev (2002) 54:285–322. doi: 10.1124/pr.54.2.285

81. Fong TM, Anderson SA, Yu H, Huang RR, Strader CD. Differential activation of
intracellular effector by two isoforms of human neurokinin-1 receptor. Mol Pharmacol
(1992) 41:24–30.

82. Serhan N, Basso L, Sibilano R, Petitfils C, Meixiong J, Bonnart C, et al. House
dust mites activate nociceptor-mast cell clusters to drive type 2 skin inflammation. Nat
Immunol (2019) 20:1435–43. doi: 10.1038/s41590-019-0493-z

83. Green DP, Limjunyawong N, Gour N, Pundir P, Dong XA. Mast-cell-specific
receptor mediates neurogenic inflammation and pain. Neuron (2019) 101:412–420
e413. doi: 10.1016/j.neuron.2019.01.012

84. McNeil BD, Pundir P, Meeker S, Han L, Undem BJ, Kulka M, et al. Identification
of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature (2015)
519:237–41. doi: 10.1038/nature14022

85. Perner C, Flayer CH, Zhu X, Aderhold PA, Dewan ZNA, Voisin T, et al.
Substance P release by sensory neurons triggers dendritic cell migration and initiates
the type-2 immune response to allergens. Immunity (2020) 53:1063–1077 e1067.
doi: 10.1016/j.immuni.2020.10.001

86. Mashaghi A, Marmalidou A, Tehrani M, Grace PM, Pothoulakis C, Dana R.
Neuropeptide substance P and the immune response. Cell Mol Life Sci (2016) 73:4249–
64. doi: 10.1007/s00018-016-2293-z

87. Suvas S. Role of substance P neuropeptide in inflammation, wound healing, and
tissue homeostasis. J Immunol (2017) 199:1543–52. doi: 10.4049/jimmunol.1601751

88. Sun J, Ramnath RD, Tamizhselvi R, Bhatia M. Role of protein kinase C and
phosphoinositide 3-kinase-Akt in substance P-induced proinflammatory pathways in
mouse macrophages. FASEB J (2009) 23:997–1010. doi: 10.1096/fj.08-121756

89. Fiebich BL, Schleicher S, Butcher RD, Craig A, Lieb K. The neuropeptide
substance P activates p38 mitogen-activated protein kinase resulting in IL-6 expression
independently from NF-kappa B. J Immunol (2000) 165:5606–11. doi: 10.4049/
jimmunol.165.10.5606

90. Sun J, Ramnath RD, Zhi L, Tamizhselvi R, Bhatia M. Substance P enhances NF-
kB transactivation and chemokine response in murine macrophages via ERK1/2 and
p38 MAPK signaling pathways. Am J Physiology-Cell Physiol (2008) 294:C1586–96.
doi: 10.1152/ajpcell.00129.2008

91. Duffy MJ, Powell D. Stimulation of brain adenylate cyclase activity by the
undecapeptide substance P and its modulation by the calcium ion. Biochim Biophys
Acta (1975) 385:275–80. doi: 10.1016/0304-4165(75)90355-4

92. Subramanian H, Gupta K, Guo Q, Price R, Ali H. Mas-related gene X2 (MrgX2)
is a novel G protein-coupled receptor for the antimicrobial peptide LL-37 in human
mast cells: resistance to receptor phosphorylation, desensitization, and internalization. J
Biol Chem (2011) 286:44739–49. doi: 10.1074/jbc.M111.277152

93. Chen X, Niyonsaba F, Ushio H, Nagaoka I, Ikeda S, Okumura K, et al. Human
cathelicidin LL-37 increases vascular permeability in the skin via mast cell activation,
and phosphorylates MAP kinases p38 and ERK in mast cells. J Dermatol Sci (2006)
43:63–6. doi: 10.1016/j.jdermsci.2006.03.001

94. Occhiuto CJ, Kammala AK, Yang C, Nellutla R, Garcia M, Gomez G, et al. Store-
operated calcium entry via STIM1 contributes to MRGPRX2 induced mast cell
functions. Front Immunol (2019) 10:3143. doi: 10.3389/fimmu.2019.03143

95. Waschek JA. VIP And PACAP: neuropeptide modulators of CNS inflammation,
injury, and repair. Br J Pharmacol (2013) 169:512–23. doi: 10.1111/bph.12181

96. Woodley PK, Min Q, Li Y, Mulvey NF, Parkinson DB, Dun XP. Distinct VIP
and PACAP functions in the distal nerve stump during peripheral nerve regeneration.
Front Neurosci (2019) 13:1326. doi: 10.3389/fnins.2019.01326

97. Moller K, Zhang YZ, Hakanson R, Luts A, Sjolund B, Uddman R, et al. Pituitary
adenylate cyclase activating peptide is a sensory neuropeptide: immunocytochemical
and immunochemical evidence. Neuroscience (1993) 57:725–32. doi: 10.1016/0306-
4522(93)90018-b

98. Hauser-Kronberger C, Hacker GW, Albegger K, Muss WH, Sundler F, Arimura
A, et al. Distribution of two VIP-related peptides, helospectin and pituitary adenylate
cyclase activating peptide (PACAP), in the human upper respiratory system. Regul Pept
(1996) 65:203–9. doi: 10.1016/0167-0115(96)00100-0

99. Fahrenkrug J, Hannibal J. PACAP in visceral afferent nerves supplying the rat
digestive and urinary tracts. Ann N Y Acad Sci (1998) 865:542–6. doi: 10.1111/j.1749-
6632.1998.tb11233.x

100. Delgado M, Munoz-Elias EJ, Kan Y, Gozes I, Fridkin M, Brenneman DE, et al.
Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide
inhibit tumor necrosis factor alpha transcriptional activation by regulating nuclear
Frontiers in Immunology 20
factor-kB and cAMP response element-binding protein/c-Jun. J Biol Chem (1998)
273:31427–36. doi: 10.1074/jbc.273.47.31427

101. Delgado M, Munoz-Elias EJ, Gomariz RP, Ganea D. Vasoactive intestinal
peptide and pituitary adenylate cyclase-activating polypeptide prevent inducible nitric
oxide synthase transcription in macrophages by inhibiting NF-kappa B and IFN
regulatory factor 1 activation. J Immunol (1999) 162:4685–96. doi: 10.4049/
jimmunol.162.8.4685

102. Delgado M, Munoz-Elias EJ, Gomariz RP, Ganea D. Vasoactive intestinal
peptide and pituitary adenylate cyclase-activating polypeptide enhance IL-10
production by murine macrophages: in vitro and in vivo studies. J Immunol (1999)
162:1707–16. doi: 10.4049/jimmunol.162.3.1707

103. Ganea D, Hooper KM, Kong W. The neuropeptide vasoactive intestinal
peptide: direct effects on immune cells and involvement in inflammatory and
autoimmune diseases. Acta Physiol (Oxf) (2015) 213:442–52. doi: 10.1111/apha.12427

104. Dickson L, Aramori I, McCulloch J, Sharkey J, Finlayson K. A systematic
comparison of intracellular cyclic AMP and calcium signalling highlights complexities
in human VPAC/PAC receptor pharmacology. Neuropharmacology (2006) 51:1086–
98. doi: 10.1016/j.neuropharm.2006.07.017

105. Dickson L, Finlayson K. VPAC and PAC receptors: From ligands to function.
Pharmacol Ther (2009) 121:294–316. doi: 10.1016/j.pharmthera.2008.11.006

106. McCulloch DA, Lutz EM, Johnson MS, MacKenzie CJ, Mitchell R. Differential
activation of phospholipase D by VPAC and PAC1 receptors. Ann N Y Acad Sci (2000)
921:175–85. doi: 10.1111/j.1749-6632.2000.tb06964.x

107. Onai N, Obata-Onai A, Schmid MA, Ohteki T, Jarrossay D, Manz MG.
Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional
dendritic cell progenitors in mouse bone marrow. Nat Immunol (2007) 8:1207–16.
doi: 10.1038/ni1518

108. Reizis B. Plasmacytoid dendritic cells: Development, regulation, and function.
Immunity (2019) 50:37–50. doi: 10.1016/j.immuni.2018.12.027

109. Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage:
ontogeny and function of dendritic cells and their subsets in the steady state and the
inflamed setting. Annu Rev Immunol (2013) 31:563–604. doi: 10.1146/annurev-
immunol-020711-074950

110. Ohnmacht C, Pullner A, King SB, Drexler I, Meier S, Brocker T, et al.
Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and
results in spontaneous fatal autoimmunity. J Exp Med (2009) 206:549–59.
doi: 10.1084/jem.20082394

111. Cabeza-Cabrerizo M, Cardoso A, Minutti CM, Pereira da Costa M, Reis e
Sousa C. Dendritic cells revisited. Annu Rev Immunol (2021) 39:131–66. doi: 10.1146/
annurev-immunol-061020-053707

112. Said A, Weindl G. Regulation of dendritic cell function in inflammation. J
Immunol Res (2015) 2015:743169. doi: 10.1155/2015/743169

113. Sichien D, Lambrecht BN, Guilliams M, Scott CL. Development of
conventional dendritic cells: from common bone marrow progenitors to multiple
subsets in peripheral tissues. Mucosal Immunol (2017) 10:831–44. doi: 10.1038/
mi.2017.8

114. Veiga-Fernandes H, Mucida D. Neuro-immune interactions at barrier surfaces.
Cell (2016) 165:801–11. doi: 10.1016/j.cell.2016.04.041

115. Kradin R, MacLean J, Duckett S, Schneeberger EE, Waeber C, Pinto C.
Pulmonary response to inhaled antigen: neuroimmune interactions promote the
recruitment of dendritic cells to the lung and the cellular immune response to
inhaled antigen. Am J Pathol (1997) 150:1735–43.

116. Doebel T, Voisin B, Nagao K. Langerhans cells - the macrophage in dendritic
cell clothing. Trends Immunol (2017) 38:817–28. doi: 10.1016/j.it.2017.06.008

117. Ding W, Stohl LL, Wagner JA, Granstein RD. Calcitonin gene-related peptide
biases Langerhans cells toward Th2-type immunity. J Immunol (2008) 181:6020–6.
doi: 10.4049/jimmunol.181.9.6020

118. Lai NY, Musser MA, Pinho-Ribeiro FA, Baral P, Jacobson A, Ma P, et al. Gut-
innervating nociceptor neurons regulate peyer's patch microfold cells and SFB levels to
mediate Salmonella host defense. Cell (2020) 180:33–49 e22. doi: 10.1016/
j.cell.2019.11.014

119. Wang Y, Li P, Zhang L, Fu J, Di T, Li N, et al. Stress aggravates and
prolongs imiquimod-induced psoriasis-like epidermal hyperplasis and IL-1beta/
IL-23p40 production. J Leukoc Biol (2020) 108:267–81. doi: 10.1002/
JLB.3MA0320-363RR

120. Wolfram JA, Diaconu D, Hatala DA, Rastegar J, Knutsen DA, Lowther A, et al.
Keratinocyte but not endothelial cell-specific overexpression of Tie2 leads to the
development of psoriasis. Am J Pathol (2009) 174:1443–58. doi: 10.2353/
ajpath.2009.080858

121. Ostrowski SM, Belkadi A, Loyd CM, Diaconu D, Ward NL. Cutaneous
denervation of psoriasiform mouse skin improves acanthosis and inflammation in a
sensory neuropeptide-dependent manner. J Invest Dermatol (2011) 131:1530–8.
doi: 10.1038/jid.2011.60

122. Wei JJ, Kim HS, Spencer CA, Brennan-Crispi D, Zheng Y, Johnson NM, et al.
Activation of TRPA1 nociceptor promotes systemic adult mammalian skin
regeneration. Sci Immunol (2020) 5. doi: 10.1126/sciimmunol.aba5683
frontiersin.org

https://doi.org/10.1038/sj.jid.5700858
https://doi.org/10.1016/s0165-5728(01)00484-2
https://doi.org/10.1016/s0165-5728(97)00044-1
https://doi.org/10.1124/pr.54.2.285
https://doi.org/10.1038/s41590-019-0493-z
https://doi.org/10.1016/j.neuron.2019.01.012
https://doi.org/10.1038/nature14022
https://doi.org/10.1016/j.immuni.2020.10.001
https://doi.org/10.1007/s00018-016-2293-z
https://doi.org/10.4049/jimmunol.1601751
https://doi.org/10.1096/fj.08-121756
https://doi.org/10.4049/jimmunol.165.10.5606
https://doi.org/10.4049/jimmunol.165.10.5606
https://doi.org/10.1152/ajpcell.00129.2008
https://doi.org/10.1016/0304-4165(75)90355-4
https://doi.org/10.1074/jbc.M111.277152
https://doi.org/10.1016/j.jdermsci.2006.03.001
https://doi.org/10.3389/fimmu.2019.03143
https://doi.org/10.1111/bph.12181
https://doi.org/10.3389/fnins.2019.01326
https://doi.org/10.1016/0306-4522(93)90018-b
https://doi.org/10.1016/0306-4522(93)90018-b
https://doi.org/10.1016/0167-0115(96)00100-0
https://doi.org/10.1111/j.1749-6632.1998.tb11233.x
https://doi.org/10.1111/j.1749-6632.1998.tb11233.x
https://doi.org/10.1074/jbc.273.47.31427
https://doi.org/10.4049/jimmunol.162.8.4685
https://doi.org/10.4049/jimmunol.162.8.4685
https://doi.org/10.4049/jimmunol.162.3.1707
https://doi.org/10.1111/apha.12427
https://doi.org/10.1016/j.neuropharm.2006.07.017
https://doi.org/10.1016/j.pharmthera.2008.11.006
https://doi.org/10.1111/j.1749-6632.2000.tb06964.x
https://doi.org/10.1038/ni1518
https://doi.org/10.1016/j.immuni.2018.12.027
https://doi.org/10.1146/annurev-immunol-020711-074950
https://doi.org/10.1146/annurev-immunol-020711-074950
https://doi.org/10.1084/jem.20082394
https://doi.org/10.1146/annurev-immunol-061020-053707
https://doi.org/10.1146/annurev-immunol-061020-053707
https://doi.org/10.1155/2015/743169
https://doi.org/10.1038/mi.2017.8
https://doi.org/10.1038/mi.2017.8
https://doi.org/10.1016/j.cell.2016.04.041
https://doi.org/10.1016/j.it.2017.06.008
https://doi.org/10.4049/jimmunol.181.9.6020
https://doi.org/10.1016/j.cell.2019.11.014
https://doi.org/10.1016/j.cell.2019.11.014
https://doi.org/10.1002/JLB.3MA0320-363RR
https://doi.org/10.1002/JLB.3MA0320-363RR
https://doi.org/10.2353/ajpath.2009.080858
https://doi.org/10.2353/ajpath.2009.080858
https://doi.org/10.1038/jid.2011.60
https://doi.org/10.1126/sciimmunol.aba5683
https://doi.org/10.3389/fimmu.2023.1127571
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
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