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Supplementary Figure 1 

Immunophenotyping panels for adipose immune-cell quantification 

(a) Representative flow cytometry plots to identify ILC2s,  T, CD4
+
 T, Foxp3

+
 Treg, and ST2

+
Foxp3

+
 Treg cells. (b) Representative flow 

cytometry plots to identify eosinophils, B220
+
CD19

+
 B, CD19

+
 B, NK, iNKT, and CD8

+
 T cells. (c) Numbers of CD4

+
 T, CD8

+
 T, 

eosinophils, CD19
+
 B, B220

+
CD19

+
 B, and NK cells per gram of eWAT at 5, 8, 11, 21 and 28 wks of age in male mice (n = 5, pooled). 

Each symbol represents an individual mouse; small horizontal lines indicate the mean. Data are representative across two experiments 
(a,b,c; mean ± s.e.m. in c). 



 
 

 

Supplementary Figure 2 

ILC2, iNKT, and Treg numbers in IL-17A-knockout and V4/6-knockout mice 

(a) Numbers (left) and frequency (right) of ILC2s in eWAT from WT, Vg4/6
–/–

 and Il17a
–/–

 16 wk old mice (n = 5, pooled). (b) Numbers 
(left) and frequency (right) of iNKTs in eWAT from WT, Vg4/6

–/–
 and Il17a

–/–
 16 wk old mice (n = 5, pooled). (c) Quantification of 

numbers (top) and frequencies (bottom) of Treg cells and ST2
+
 Treg cells from spleen, lung, and adipose tissue from WT, Vg4/6

–/–
 and 

Il17a
–/–

 16 wk old mice (n ≥ 3). (d) IL-33 protein from SVF eWAT lysates of 11 wk male WT and Il17a
–/–

 mice normalized to total SVF 
protein by ELISA (n ≥ 3). (e) Numbers (top) and frequency (bottom) of Treg cells and ST2

+
 Treg cells from WT and Il17a

–/–
 eWAT at 11 

wks of age (n ≥ 4). Each symbol represents an individual mouse; small horizontal lines indicate the mean. NS, not significant (P > 0.05); 
* P < 0.05; **** P < 0.0001 (One-way ANOVA in a-c; Student’s t test in d-e). Data are pooled across two experiments (a-e; mean ± 
s.e.m. in a-e). 



 
 

 

Supplementary Figure 3 

In vitro and in vivo cytokine stimulations of epididymal adipose stromal cells 

(a) 3T3L1 adipose fibroblasts were unstimulated (unstim) or stimulated with TNF
lo
 (0.1ng/mL), TNF

hi
 (1ng/mL), IL-17A

lo
 (0.1ng/mL), IL-

17A
hi
 (1ng/mL), IL-1

lo
 (0.1ng/mL), IL-1

hi
 (1ng/mL), IFN-

lo
 (0.1ng/mL), IFN-

hi
 (1ng/mL), or a combination of the cytokines as indicated 

for 18h. IL-33 protein was measured by ELISA. (b) WT mice were injected with saline or TNF (1 g) and IL-17A (0.5 g) every third day 
for a total of nine days and eWAT RNA isolated. Il33 transcript levels were measured by quantitative real-time PCR and normalized to 
Tbp (n ≥ 5). Representative flow cytometry plots (c) and Il33 expression from iWAT stromal cells (d) after WT mice were injected with 

saline or TNF (1 g) and IL-17A (0.5 g) every third day for a total of nine days. Il33 normalized with Tbp (n ≥ 3, pooled). Small 
horizontal lines indicate the mean. ** P < 0.01; **** P < 0.0001 (One-way ANOVA in a,d; Student’s t test in b). Data are pooled across 
two experiments run in triplicates (a; mean ± s.e.m. in a). Data are representative of two experiments (b-d; mean ± s.e.m. in b,d). 



 
 

 

Supplementary Figure 4 

Decreased numbers, and not gene expression, probably contribute to lower IL-33 protein 

(a) Quantification of numbers (top) and frequencies (bottom) of CD31
+
, PDGFR

+
Pdpn

–
, Pdpn

hi
, and Pdpn

lo
 eWAT stromal cells from 

23 wk old WT, Tcrd
–/–

, Vg4/6
–/–

, and Il17a
–/–

 male mice (n ≥ 3 mice per genotype).  (b) Quantitative real-time PCR for Il33 expression 

normalized with Tbp from sorted Pdpn
hi
, PDGFR

+
, CD31

+
, and CD45

+
 cells from WT, Tcrd

–/–
, Vg4/6

–/–
, and Il17a

–/–
 mice (n ≥ 3 mice 

per genotype). Each symbol represents an individual mouse; small horizontal lines indicate the mean. NS, not significant (P > 0.05); * P 
< 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001. (One-way ANOVA in a-b). Data are representative of two experiments (a-b; mean ± 
s.e.m. in a-b). 



 
 

 

Supplementary Figure 5 

 T cells promote temperature regulation and IL-33 homeostasis in BAT and iWAT 

(a) IL-33 protein was quantified from cell lysates of eWAT, iWAT, and BAT from WT, Tcrd
–/–

 and Vg4/6
–/–

 mice using ELISA (left).  
Quantitative real-time PCR for Il33 expression normalized with Tbp (right) from iWAT and BAT of WT, Tcrd

–/–
 and Vg4/6

–/–
 mice (n ≥ 4). 

(b) Representative gross anatomy of iWAT from 22 wk old WT, Tcrd
–/–

 and Vg4/6
–/–

 mice after 6 h at 4 °C. (c) Energy expenditure 

measured from WT and Tcrd
–/–

 mice injected with sterile saline at time 0 h and subsequently injected with selective 3-adrenergic 
receptor, CL-316 243, (1mg/kg) at 3 h (n = 5 per genotype). Small horizontal lines indicate the mean. NS, not significant; * P < 0.05; ** 
P < 0.01; *** P < 0.001. (One-way ANOVA in a; Metabolic variable adjusted for differences in body composition by ANCOVA in c). Data 
are representative of two experiments (a,b; mean ± s.e.m. in a) or one experiment (c; mean ± s.e.m. in c). 



 
 

 

Supplementary Figure 6 

IL-17A promotes thermogenic responses in BAT and iWAT 

(a) Frequency (left) and numbers (right) of  T cells at 0, 8, and 24 h at 4 °C in BAT and iWAT (n ≥ 3 mice per condition). (b) 
Quantitative real-time PCR of Ppargc1a, Dio2, and Cox7a1 normalized to Tbp in BAT between WT and Il17a

–/– 
mice (n ≥ 3). (c) 

Quantitative real-time PCR of Ppargc1a and Dio2 normalized to Tbp in iWAT between WT and Il17a
–/– 

mice (n ≥ 3). (d) Mice were 

gradually shifted from 30 °C to 4 °C at a continuous rate and body temperature measured between WT and Il17a
–/– 

male mice (n = 5 
mice per genotype). (e) Body temperature (top) and RER (bottom) measured for 72 h at thermoneutrality after acclimation between WT 
and Il17a

–/– 
male mice (n = 5 per genotype). Each symbol represents an individual mouse; small horizontal lines indicate the mean. NS, 

not significant (P > 0.05); * P < 0.05; ** P < 0.01; *** P < 0.001. (Student’s t test in b-c; One-way ANOVA in a; Metabolic variable 
adjusted for differences in body composition by ANCOVA in d-e). Data are representative of two experiments (a-c; mean ± s.e.m. in a-
c). 



 
 

 

Supplementary Figure 7 

Gene expression analysis of BAT and iWAT 

Quantitative real-time PCR of Th, Adrb3, Lipe (Hsl), and Pnpla2 (Atgl) in brown (a) and inguinal (b) adipose tissue obtained from WT, 

Tcrd
–/–

, Vg4/6
–/–

 and Il17a
–/–

 mice at room temperature (25 °C) and after 6 h cold at 4 °C. Genes normalized to Tbp (n ≥ 4 mice per 
condition). Each symbol represents an individual mouse; small horizontal lines indicate the mean. NS, not significant (P > 0.05); * P < 
0.05; ** P < 0.01. (One-way ANOVA in a,b). Data are representative of two experiments (a,b; mean ± s.e.m. in a,b). 



 
 

 

Supplementary Figure 8 

 T cells directly and indirectly influence adaptive thermogenesis 

(a) Differentiated brown adipocytes were stimulated with indicated amounts of TNF
lo
 (0.1ng/mL), TNF

hi
 (1ng/mL), IL-17A

lo
 (0.1ng/mL), 

IL-17A
hi
 (1ng/mL), for 18 h and Ucp1, Dio2, Cidea, and Il33 transcript levels were measured by quantitative real-time PCR and 

normalized with Tbp. (b) Differentiated brown adipocytes were stimulated with either IL-33
lo
 (10ng/mL), IL-33

hi
 (100ng/mL), and 

analyzed as in a.  (c) Representative flow cytometry plots (left) of iWAT stromal cells after WT mice were injected with saline (top row) 

or TNF (1 g) and IL-17A (0.5 g) every third day for a total of nine days. Pdpn
+
PDGFR

–
 and PDGFR

+ 
iWAT stromal cells were 

sorted and gene expression of Ucp1, Ppargc1a, and Dio2 measured by quantitative real-time PCR and normalized with Tbp (n ≥ 3). 
Frequency (top) and numbers (bottom) of eosinophils, ILC2s, iNKT, and Treg cells from WT, Tcrd

–/–
 and Vg4/6

–/–
 brown (d) and inguinal 

(e) adipose tissue from 22 wk male mice (n ≥ 4 mice per group).  Each symbol represents an individual replicate or mouse. Data are 
representative of two experiments (a-e; mean ± s.e.m. in a-e). NS, not significant (P > 0.05); * P < 0.05; ** P < 0.01; *** P < 0.001; **** 
P < 0.0001. (One-way ANOVA in a-e). 
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