In the format provided by the authors and unedited.

$\gamma\delta$ T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis

Ayano C. Kohlgruber^{1,2}, Shani T. Gal-Oz³, Nelson M. LaMarche^{1,2}, Moto Shimazaki¹, Danielle Duquette⁴, Hui-Fern Koay^{5,6}, Hung N. Nguyen¹, Amir I. Mina¹, Tyler Paras¹, Ali Tavakkoli⁷, Ulrich von Andrian^{2,8}, Adam P. Uldrich^{5,6}, Dale I. Godfrey^{5,6}, Alexander S. Banks¹, Tal Shay¹, Michael B. Brenner^{1,10*} and Lydia Lynch^{1,4,9,10*}

¹Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA. ²Division of Medical Sciences, Harvard Medical School, Boston, MA, USA. ³Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel. ⁴Division of Endocrinology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA. ⁵Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia. ⁶ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Australia. ⁷Department of General and Gastrointestinal Surgery, Brigham and Women's Hospital, Boston, MA, USA. ⁸Department of Microbiology and Immunology, Harvard Medical School, Boston, MA, USA. ⁹School of Biochemistry and Immunology, Trinity College, Dublin, Ireland. ¹⁰These authors jointly supervised this work: Michael B. Brenner and Lydia Lynch. *e-mail: mbrenner@research.bwh.harvard.edu; Ilynch@bwh.harvard.edu

Immunophenotyping panels for adipose immune-cell quantification

(a) Representative flow cytometry plots to identify ILC2s, $\gamma\delta$ T, CD4⁺ T, Foxp3⁺ T_{reg}, and ST2⁺Foxp3⁺ T_{reg} cells. (b) Representative flow cytometry plots to identify eosinophils, B220⁺CD19⁺ B, CD19⁺ B, NK, *I*NKT, and CD8⁺ T cells. (c) Numbers of CD4⁺ T, CD8⁺ T, eosinophils, CD19⁺ B, B220⁺CD19⁺ B, and NK cells per gram of eWAT at 5, 8, 11, 21 and 28 wks of age in male mice (*n* = 5, pooled). Each symbol represents an individual mouse; small horizontal lines indicate the mean. Data are representative across two experiments (**a**,**b**,**c**; mean ± s.e.m. in c).

ILC2, iNKT, and T_{reg} numbers in IL-17A-knockout and Vy4/6-knockout mice

(a) Numbers (left) and frequency (right) of ILC2s in eWAT from WT, $Vg4/6^{-/-}$ and $II17a^{-/-}$ 16 wk old mice (n = 5, pooled). (b) Numbers (left) and frequency (right) of *I*NKTs in eWAT from WT, $Vg4/6^{-/-}$ and $II17a^{-/-}$ 16 wk old mice (n = 5, pooled). (c) Quantification of numbers (top) and frequencies (bottom) of T_{reg} cells and ST2⁺ T_{reg} cells from spleen, lung, and adipose tissue from WT, $Vg4/6^{-/-}$ and $II17a^{-/-}$ 16 wk old mice (n = 5, pooled). (c) Quantification of numbers (top) and frequencies (bottom) of T_{reg} cells and ST2⁺ T_{reg} cells from spleen, lung, and adipose tissue from WT, $Vg4/6^{-/-}$ and $II17a^{-/-}$ 16 wk old mice ($n \ge 3$). (d) IL-33 protein from SVF eWAT lysates of 11 wk male WT and $II17a^{-/-}$ mice normalized to total SVF protein by ELISA ($n \ge 3$). (e) Numbers (top) and frequency (bottom) of T_{reg} cells and ST2⁺ T_{reg} cells from WT and $II17a^{-/-}$ eWAT at 11 wks of age ($n \ge 4$). Each symbol represents an individual mouse; small horizontal lines indicate the mean. NS, not significant (P > 0.05); * P < 0.05; **** P < 0.0001 (One-way ANOVA in **a-c**; Student's *t* test in **d-e**). Data are pooled across two experiments (**a-e**; mean \pm s.e.m. in **a-e**).

In vitro and in vivo cytokine stimulations of epididymal adipose stromal cells

(a) 3T3L1 adipose fibroblasts were unstimulated (unstim) or stimulated with TNF^{Io} (0.1ng/mL), TNF^{hi} (1ng/mL), IL-17A^{Io} (0.1ng/mL), IL-17A^{Io} (0.1ng/mL), IL-17A^{Io} (0.1ng/mL), IL-17A^{Io} (0.1ng/mL), IFN- γ^{Io} (0.1ng/mL), IFN- γ^{Io} (1ng/mL), IFN- γ^{Io} (1ng/mL), IFN- γ^{Io} (1ng/mL), or a combination of the cytokines as indicated for 18h. IL-33 protein was measured by ELISA. (b) WT mice were injected with saline or TNF (1 µg) and IL-17A (0.5 µg) every third day for a total of nine days and eWAT RNA isolated. *II33* transcript levels were measured by quantitative real-time PCR and normalized to *Tbp* ($n \ge 5$). Representative flow cytometry plots (c) and *II33* expression from iWAT stromal cells (d) after WT mice were injected with saline or TNF (1 µg) and IL-17A (0.5 µg) every third day for a total of nine days. *II33* normalized with *Tbp* ($n \ge 3$, pooled). Small horizontal lines indicate the mean. ** P < 0.01; **** P < 0.0001 (One-way ANOVA in **a**,d; Student's *t* test in **b**). Data are pooled across two experiments run in triplicates (**a**; mean ± s.e.m. in **a**). Data are representative of two experiments (**b-d**; mean ± s.e.m. in **b**,d).

Decreased numbers, and not gene expression, probably contribute to lower IL-33 protein

(a) Quantification of numbers (top) and frequencies (bottom) of CD31⁺, PDGFR α^+ Pdpn⁻, Pdpn^{hi}, and Pdpn^{lo} eWAT stromal cells from 23 wk old WT, *Tcrd^{-/-}*, *Vg4/6^{-/-}*, and *ll17a^{-/-}* male mice ($n \ge 3$ mice per genotype). (b) Quantitative real-time PCR for *ll33* expression normalized with *Tbp* from sorted Pdpn^{hi}, PDGFR α^+ , CD31⁺, and CD45⁺ cells from WT, *Tcrd^{-/-}*, *Vg4/6^{-/-}*, and *ll17a^{-/-}* mice ($n \ge 3$ mice per genotype). Each symbol represents an individual mouse; small horizontal lines indicate the mean. NS, not significant (P > 0.05); * *P* < 0.05; ** *P* < 0.001; **** *P* < 0.001; **** *P* < 0.0001. (One-way ANOVA in **a-b**). Data are representative of two experiments (**a-b**; mean ± s.e.m. in **a-b**).

 $\gamma\delta$ T cells promote temperature regulation and IL-33 homeostasis in BAT and iWAT

(a) IL-33 protein was quantified from cell lysates of eWAT, iWAT, and BAT from WT, $Tcrd^{-/-}$ and $Vg4/6^{-/-}$ mice using ELISA (left). Quantitative real-time PCR for *II33* expression normalized with *Tbp* (right) from iWAT and BAT of WT, $Tcrd^{-/-}$ and $Vg4/6^{-/-}$ mice $(n \ge 4)$. (b) Representative gross anatomy of iWAT from 22 wk old WT, $Tcrd^{-/-}$ and $Vg4/6^{-/-}$ mice after 6 h at 4 °C. (c) Energy expenditure measured from WT and $Tcrd^{-/-}$ mice injected with sterile saline at time 0 h and subsequently injected with selective β 3-adrenergic receptor, CL-316 243, (1mg/kg) at 3 h (n = 5 per genotype). Small horizontal lines indicate the mean. NS, not significant; * P < 0.05; ** P < 0.01; *** P < 0.001. (One-way ANOVA in **a**; Metabolic variable adjusted for differences in body composition by ANCOVA in **c**). Data are representative of two experiments (**a**,**b**; mean ± s.e.m. in **a**) or one experiment (**c**; mean ± s.e.m. in **c**).

IL-17A promotes thermogenic responses in BAT and iWAT

(a) Frequency (left) and numbers (right) of $\gamma\delta$ T cells at 0, 8, and 24 h at 4 °C in BAT and iWAT ($n \ge 3$ mice per condition). (b) Quantitative real-time PCR of *Ppargc1a, Dio2,* and *Cox7a1* normalized to *Tbp* in BAT between WT and $II17a^{-/-}$ mice ($n \ge 3$). (c) Quantitative real-time PCR of *Ppargc1a* and *Dio2* normalized to *Tbp* in iWAT between WT and $II17a^{-/-}$ mice ($n \ge 3$). (d) Mice were gradually shifted from 30 °C to 4 °C at a continuous rate and body temperature measured between WT and $II17a^{-/-}$ male mice ($n \ge 5$). (e) Body temperature (top) and RER (bottom) measured for 72 h at thermoneutrality after acclimation between WT and $II17a^{-/-}$ male mice (n = 5 per genotype). Each symbol represents an individual mouse; small horizontal lines indicate the mean. NS, not significant (P > 0.05); * P < 0.05; ** P < 0.01; *** P < 0.001. (Student's *t* test in **b-c**; One-way ANOVA in **a**; Metabolic variable adjusted for differences in body composition by ANCOVA in **d-e**). Data are representative of two experiments (**a-c**; mean ± s.e.m. in **a-c**).

Gene expression analysis of BAT and iWAT

Quantitative real-time PCR of *Th*, *Adrb3*, *Lipe* (*Hsl*), and *Pnpla2* (*Atgl*) in brown (**a**) and inguinal (**b**) adipose tissue obtained from WT, *Tcrd^{-/-}*, *Vg4/6^{-/-}* and *II17a^{-/-}* mice at room temperature (25 °C) and after 6 h cold at 4 °C. Genes normalized to *Tbp* ($n \ge 4$ mice per condition). Each symbol represents an individual mouse; small horizontal lines indicate the mean. NS, not significant (P > 0.05); * P < 0.05; ** P < 0.01. (One-way ANOVA in **a,b**). Data are representative of two experiments (**a,b**; mean ± s.e.m. in **a,b**).

 $\gamma\delta$ T cells directly and indirectly influence adaptive thermogenesis

(a) Differentiated brown adipocytes were stimulated with indicated amounts of TNF^{lo} (0.1ng/mL), TNF^{hi} (1ng/mL), IL-17A^{lo} (0.1ng/mL), IL-17A^{hi} (1ng/mL), for 18 h and *Ucp1*, *Dio2*, *Cidea*, and *II*33 transcript levels were measured by quantitative real-time PCR and normalized with *Tbp*. (b) Differentiated brown adipocytes were stimulated with either IL-33^{lo} (10ng/mL), IL-33^{hi} (100ng/mL), and analyzed as in **a**. (c) Representative flow cytometry plots (left) of iWAT stromal cells after WT mice were injected with saline (top row) or TNF (1 µg) and IL-17A (0.5 µg) every third day for a total of nine days. Pdpn⁺PDGFRa⁻ and PDGFRa⁺ iWAT stromal cells were sorted and gene expression of *Ucp1*, *Ppargc1a*, and *Dio2* measured by quantitative real-time PCR and normalized with *Tbp* ($n \ge 3$). Frequency (top) and numbers (bottom) of eosinophils, ILC2s, *I*NKT, and T_{reg} cells from WT, *Tcrd^{-/-}* and *Vg4/6^{-/-}* brown (**d**) and inguinal (**e**) adipose tissue from 22 wk male mice ($n \ge 4$ mice per group). Each symbol represents an individual replicate or mouse. Data are representative of two experiments (**a-e**; mean ± s.e.m. in **a-e**). NS, not significant (P > 0.05); * P < 0.05; ** P < 0.01; **** P < 0.001; ****