
Immunity

Article
Antigen Availability Determines CD8+

T Cell-Dendritic Cell Interaction Kinetics
and Memory Fate Decisions
Sarah E. Henrickson,1 Mario Perro,1,4 Scott M. Loughhead,1,4 Balimkiz Senman,1,4 Susanne Stutte,1 Michael Quigley,2

Gabriela Alexe,2 Matteo Iannacone,1 Michael P. Flynn,1 Shaida Omid,1 Jonathan L. Jesneck,2 Sabrina Imam,2

Thorsten R. Mempel,3 Irina B. Mazo,1 W. Nicholas Haining,2 and Ulrich H. von Andrian1,*
1Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
2Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children’s Hospital Boston, Harvard Medical School, Boston,

MA 02115, USA
3Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA
4These authors contributed equally to this work
*Correspondence: uva@hms.harvard.edu

http://dx.doi.org/10.1016/j.immuni.2013.08.034
SUMMARY

T cells are activated by antigen (Ag)-bearing den-
dritic cells (DCs) in lymph nodes in three phases.
The duration of the initial phase of transient, serial
DC-T cell interactions is inversely correlated with
Ag dose. The second phase, characterized by stable
DC-T cell contacts, is believed to be necessary for
full-fledged T cell activation. Here we have shown
that this is not the case. CD8+ T cells interacting
with DCs presenting low-dose, short-lived Ag did
not transition to phase 2, whereas higher Ag dose
yielded phase 2 transition. Both antigenic constel-
lations promoted T cell proliferation and effector
differentiation but yielded different transcriptome
signatures at 12 hr and 24 hr. T cells that experienced
phase 2 developed long-livedmemory, whereas con-
ditions without stable contacts yielded immunolog-
ical amnesia. Thus, T cells make fate decisions within
hours after Ag exposure, resulting in long-termmem-
ory or abortive effector responses, correlating with
T cell-DCs interaction kinetics.

INTRODUCTION

When a naive T (Tn) cell exits the thymus, it embarks on a sin-

gle-minded mission: to find and eliminate pathogens to which it

can respond. T cells rely on T cell receptors (TCR), which

recognize peptides in major histocompatibility complexes

(pMHC) on antigen (Ag)-presenting cells (APCs) (Germain and

Stefanová, 1999). In theory, there are billions of Ags for CD8+

T cells, which recognize MHC class I molecules complexed

with noncovalently bound peptides. In practice, for a given

MHC allele, peptide number is limited by specific residues

that determine whether and how long a peptide can be pre-

sented (Townsend and Bodmer, 1989). Nonetheless, the diver-

sity of potential T cell Ags is enormous and requires a large

repertoire of T cells, each with its own randomly assembled
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TCR. This need for TCR diversity is balanced by the metabolic

cost of T cell generation, so the frequency of Tn cells that

express a ‘‘cognate’’ TCR specific for any individual pMHC

complex is only 1 in 105–107 (Blattman et al., 2002; Casrouge

et al., 2000).

Ag-specific Tn cells must quickly assess whether an Ag is pre-

sent, whether it poses a threat, and, if so, what response will be

appropriate (Lanzavecchia and Sallusto, 2000). This information

is provided to Tn cells by dendritic cells (DCs) in lymph nodes

(LNs), which constantly recruit Tn cells from the blood and

receive Ag-carrying DCs via afferent lymphatics from nearby tis-

sues (von Andrian and Mempel, 2003). Tn cells migrate rapidly

(>10 mm/min) within the LN cortex to query local DCs for the

presence of cognate Ag. A single DC can be contacted by

�5,000 T cells/hr (Miller et al., 2004a), and this high scanning

efficiency is necessary, in particular for CD8+ Tn cells, because

antigenic peptides in MHC class I can dissociate quickly (Zinker-

nagel and Doherty, 1974). This challenge becomes particularly

relevant when Tn cells must respond to transient, nonreplicating

Ags, such as recombinant vaccines.

As Tn cells encounter Ag-presenting DCs, they must decide

whether or not to respond. For full activation, Tn cells require

multiple signals, including TCR recognition of cognate pMHCs,

costimulation by B7 family members, and cytokines (Henrickson

and von Andrian, 2007). This generates rapidly proliferating

effector cells (Teff) that migrate to inflamed tissues where they

produce cytokines (especially interferon-g [IFN-g]) and kill

APCs. Upon Ag clearance, most Teff cells apoptose, but in

many settings a few Ag-experienced T cells persist as long-lived

memory cells that respond more quickly and efficiently to

cognate Ag than Tn cells (Williams and Bevan, 2007).

CD8+ T cells can be ‘‘programmed’’ by short-term access to

Ag-presenting DCs to allow differentiation of Teff and memory

cells, indicating that CD8+ Tn cells can make early fate decisions

(Williams and Bevan, 2007). However, although specific T cell

markers have been correlated with memory differentiation (Joshi

et al., 2007; Kaech et al., 2002; Sarkar et al., 2008; Wherry et al.,

2007), most of these markers appear only on day 4 or later after

Ag encounter. To date, reliable standardized in vivo models that

can be ‘‘tuned’’ to either induce or fail to induce T cell memory

have been missing.
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Here, we used multiphoton intravital microcopy (MP-IVM) in

mouse popliteal LNs (popLNs) to analyze how and when interac-

tions between CD8+ Tn cells and Ag-presenting DCs influence

effector and memory differentiation. This study was informed

by earlier findings that CD8+ T cells are primed in LNs in three

phases (Mempel et al., 2004). Phase 1 can last up to �8 hr and

is characterized by transient T cell interactions with Ag-pulsed

DCs. T cells integrate the antigenic stimuli from each encounter

until the cumulative signal triggers phase 2 when T cells form a

long-lasting contact with a single DC (Mempel et al., 2004).

The higher the concentration of cognate pMHCs per DC, the

faster T cells reach phase 2 and the shorter is phase 1 (Henrick-

son et al., 2008). Phase 2 lasts�12 hr and is accompanied by up-

regulation of activation markers and cytokine production. Phase

3 begins �1 day after T cell entry into the LN when T cells return

to short interactions and proliferate vigorously. Sequential

phases of transient and stable DC-T cell contacts have been

independently observed in many systems (Hugues et al., 2004;

Mempel et al., 2004; Miller et al., 2004b; Skokos et al., 2007; Stoll

et al., 2002); however, it has been unclear whether the stable

contacts that define phase 2 are necessary for full-fledged

T cell activation, as is widely assumed, or if they simply correlate

with T cell differentiation to Teff and memory cells. It has also

been uncertain whether and how early interaction dynamics

influence Tn cell fate, particularly the acquisition of longevity

and self-renewal capacity needed for immunologic memory.

To address this question,we adapted anexperimental strategy

whereby Ag-specific CD8+ Tn cells are allowed to encounter in

LNs a finite number of DCs that were pulsed with either a low or

a high dose of a naturally occurring viral peptide Ag (Henrickson

et al., 2008). This enabled us to ask how T cells make fate deci-

sions in vivo while Ag dose and persistence were precisely

controlled. Our approachmay notmimic a typical infectionwhere

the kinetics of Ag availability are more complex; however, similar

conditions might be encountered when T cells respond to non-

replicating vaccine Ags. We found that only DCs pulsed with

the high Ag dose supported phase 2-like tight interactions with

cognate T cells, but DCs pulsed with either Ag dose induced

T cell proliferation and Teff cell differentiation. The differential

interactive behavior inducedby high- versus low-doseAg-pulsed

DCs was paralleled by distinct transcriptional programs in acti-

vated T cells. Moreover, only T cells that interactedwith DCs pre-

sentinghigh-doseAggave rise to sustained immunologicalmem-

ory, suggesting that information exchange in phase 2 is critical for

long-term protection and avoiding immunological amnesia.

RESULTS

MP-IVM Studies of Low-Dose Peptide-Pulsed DCs
Interacting with Ag-Specific T Cells
To control the dose and availability of Ag in mouse LNs, we used

a protocol that delivers Ag by footpad injection of peptide-pulsed

DCs, so Ag availability was limited to a few hundred DCs that

migrated to the draining popLN. Tn cells were injected intrave-

nously (i.v.) 18 hr later, allowing a few thousand transferred cells

to access the popLN before further entry was blocked (Henrick-

son et al., 2008; Mempel et al., 2004). This protocol ensures that

all measured responses were due to locally confined T cell-APC

interactions (Figure 1A).
Im
For Ag pulsing, splenic DCs were incubated in vitro for 1 hr

with varied doses of gp33–41 (KAVYNFATC, ‘‘C-peptide’’), an

immunodominant peptide of lymphocytic choriomeningitis virus

(LCMV) that complexes with MHC H-2Db and activates CD8+

Tn cells from TCR transgenic P14 mice (Pircher et al., 1989).

During DC pulsing, endogenous peptides in surface-expressed

H-2Db are replaced by C-peptide; the fraction of C-peptide

loaded H2-Db complexes on DCs depends on the peptide con-

centration in the pulsing buffer and decreases over time as

noncovalently bound C-peptide dissociates (Henrickson et al.,

2008).

Pulsing conditions were chosen after measuring the ability of

DCs pulsed with different C-peptide concentrations to yield Tn

cell proliferation in vivo. A pulsing concentration of 1 mM was

the lowest at which pulsed DCs reproducibly induced prolifera-

tion of >95% of P14 cells (Figure 1B). MP-IVM was performed

with DCs pulsed with either the threshold dose (1 mM) of C-pep-

tide (1C DC) or with a higher dose, 100 mM (100CDC), which pro-

vided maximal initial loading of DC-expressed H2-Db. Pulsed

DCs were washed, labeled fluorescently, and injected into a

footpad. Eighteen hours later, fluorescent P14 Tn cells and

differentially labeled control OT-I Tn cells (bearing an irrelevant

TCR) were coinjected i.v.; after 2 hr, further T cell homing to

LNs was blocked with anti-L-selectin to synchronize intranodal

T cell dwell-time and permit exact kinetic studies of T cell activa-

tion (Figure 1A). At different times thereafter, mice were anesthe-

tized and the popLN draining the injected footpad was prepared

for MP-IVM.

Earlier studies show that P14 Tn cells that encounter DCs

pulsed with an intermediate dose (10 mM; 10C) of C-peptide

engage in three interactive phases (Mempel et al., 2004). Also,

work with an altered peptide ligand for P14 T cells, KAVYNFATM

(M-peptide), which has a higher affinity and longer half-life in

H2-Db than C-peptide (Achour et al., 2002; Boulter et al., 2007;

Henrickson et al., 2008), shows that M-peptide concentration

is reciprocally correlated with the duration of the first phase dur-

ing which T cells undergo brief serial contacts with DCs (Henrick-

son et al., 2008). T cells that encounter DCs bearing a higher

amount of M-peptide require fewer interactions to initiate phase

2, which is defined as the period during which the median T cell-

DC contact duration is R30min (Mempel et al., 2004). Any

M-peptide dose that supports P14 cell priming also induces

phase 2-like contacts, while phase 2 is absent when DCs are

pulsed with aM-peptide dose just below the activation threshold

(Henrickson et al., 2008). This correlation of interactive behavior

and proliferative response seems consistent with the idea that

phase 2-like DC-T cell conjugates are a prerequisite for T cell

activation (Fooksman et al., 2009).

P14 T cell interactions differed when exposed to 1C DCs

(Figures 1C–1H), which failed to promote phase 2 interactions

(Table 1; see Movies S1–S5 available online). At most, �3.8%

of contacts lasted R30min at any time from 5 to 10 hr after

T cell transfer when phase 2 is usually observed (Henrickson

et al., 2008; Mempel et al., 2004). In contrast, phase 2-like tight

conjugates were prevalent when 100C DCs or 10 mMM-peptide

pulsed DCs (10M DCs) were used (Figures 1D–1F; Movie S6). Of

note, although the mean contact duration of P14 cells with 1C

DCs never exceeded �7 min, these cognate interactions were

still subtly but significantly prolonged when compared to
munity 39, 496–507, September 19, 2013 ª2013 Elsevier Inc. 497
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Figure 1. P14 T Cells Maintain Brief Interac-

tions with 1 mM C-Peptide Pulsed DCs

(A) Experimental paradigm for study of P14

Tcra�/� (P14) and control (OT-I Rag1�/�) T cell

interactions with peptide-pulsed DCs. Unless

otherwise mentioned, this will be the protocol for

experiments throughout the paper.

(B) Percentage of antigen-specific (P14) T cells at

48 hr that remain unproliferated after exposure

in vivo to DCs pulsed with various concentrations

of C-peptide (error bars are mean ± SD).

(C–G) P14 and control stated above (that OT-I are

Rag1�/�) T cell interactions with DCs pulsed with

1 mM or 100 mM C-peptide pulsed DCs (1C or

100C, respectively) were visualized in popLNs by

MP-IVM at the indicated time points after T cell

injection i.v. (C) Duration of P14 T cell-1C-peptide-

pulsed DC (1C DC) contacts at various time points

after T cell transfer was assessed in 3D re-

constructed videos (error bar at median, *** = p <

0.0001, ** = p = 0.0013 by Mann-Whitney). (D)

Duration of T cell-DC contacts with 1C DC or 100C

DC at various time points after T cell transfer was

assessed in 3D reconstructed videos. P14 and

control T cell interactions with 1C versus 100C

DCs were visualized in popliteal LNs by MP-IVM

from 0–10 hr after T cell injection (bar at median,

box surrounds durations of 30–60 min, percentage

of events above box). (E and F) Cumulative distri-

bution plots of interaction durations for P14 (E) and

control (F) T cells interacting with 1C or 100C. (G)

The bootstrap corrected means of the interaction

durations between P14 T cells (blue) control T cells

(red) with DCs. (1C: n = 2–4 experiments per time

point; mean ± 95%confidence interval [CI], ** = p <

0.0004 and p = 0.0008).

(H) The bootstrap corrected means of the

meandering indices (MI) of P14 and control T cells

when interacting with 1C or 100C DCs. Cell cen-

troids in 3Dweremeasured by semiautomated cell

tracking and the MI was calculated by dividing the

displacement for each cell track by the total path

length for that cell track. (n = 2–4 expt per timept;

mean ± 95% CI, ** = p < 4 3 10�4, * = p = 0.017).

See also Movies S1–S6.
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noncognate interactions of control OT-I cells with either Mann-

Whitney test (Figure 1C) or bootstrap correctedmean (Figure 1G).

We also measured the meandering index (MI), the ratio of a

migrating cell’s linear displacement to the total path length (Hen-

rickson et al., 2008), by using automated custom-designed cell

tracking software, which avoids potential observer bias. Free-

moving Tn cells in Ag-free LNs have a median MI of �0.5,

whereas phase 2-like DC-T cell interactions confine T cells and

reduce the MI to <0.3 (Henrickson et al., 2008)). The median MI

of P14 cells encountering 1C DCs during the first 10 hr after

T cell transfer was slightly lower than that of control OT-I cells,

but always remained >0.4 (Figure 1H). Thus, 1C DCs subtly

confined P14 Tn cells, but did not support phase 2-like inter-

actions (Figures 1B–1F).

Proliferation after Tn Cell Exposure to High Versus Low
Ag Constellations
Next, we examined the kinetics and magnitude of P14 cell prolif-

eration. CFSE-labeled P14 Tn cells (CD45.2+) were injected i.v.
498 Immunity 39, 496–507, September 19, 2013 ª2013 Elsevier Inc.
into congenic recipients (CD45.1+) 18 hr after footpad injection

of DCs, and CFSE dilution of transferred P14 T cells was moni-

tored (Figure 2A). Consistent with our dose-finding experiments

(Figure 1B), both 1C DC and 100C DC induced rapid P14 cell

proliferation with nearly identical kinetics during the first 48 hr

(Figure 2B), suggesting that CD8+ Tn cells can be activated

in vivo without sustained contacts with Ag presenting DCs. How-

ever, a strong inflammatory challenge usually induces temporary

trapping of T cells in LNs (Shiow et al., 2006). Conceivably, the

weak stimulus from 1C DCs might not have exerted this effect,

so unstimulated P14 cells could have exited the LN. Thus, it re-

mained theoretically possible that the proliferated cells did not

arise from precursors that engaged in transient interactions

and instead were progeny of the small fraction (<4%) that under-

went stable contacts with 1C DC (Figure 1C).

To account for potential premature exit of undivided Tn cells

from LNs, we injected mice at 2 hr after T cell transfer with

anti-L-selectin (to block further homing) and FTY-720, a sphin-

gosine-1-phosphate (S1P) receptor agonist that prevents T cell



Table 1. Quantification of T Cell-DC Contact Durations

Time after T Cell Transfer,

T Cell Specificity, and DC

Peptide Pulsing Dose

Number of

Interactions

Assessed

Number of

Interactions

R30 min

Duration

Percentage

of Total

0–5 hr P14, 1C 142 4 2.8

0–5 hr control, 1C 93 0 0

5–10 hr P14, 1C 613 23 3.8

5–10 hr control, 1C 405 1 0.25

10–15 hr P14, 1C 301 0 0

10–15 hr control, 1C 210 0 0

15–20 hr P14, 1C 355 1 0.28

15–20 hr control, 1C 187 1 0.53

20–25 hr P14, 1C 233 5 2.2

20–25 hr control, 1C 230 1 0.43

0–5 hr P14, 100C 104 45 43.3

0–5 hr control, 100C 62 0 0

5–10 hr P14, 100C 109 67 61.5

5–10 hr control, 100C 55 0 0

Summary of the duration of interactions of P14 and control CD8+ T cells

with both 100C DCs and 1C DCs from MP-IVM studies in popLN of

recipient B6 mice from 0–25 hr after T cell transfer. For each 5 hr bin,

the number of total DC-T cell interactions, the number of interactions

with a duration of greater than 30 min, the definition of a stable DC-T

cell contact, and the percentage of interactions greater than 30 min are

shown.
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egress from LNs (Mandala et al., 2002). By simultaneously block-

ing T cell entry and exit, we could accurately monitor the entire

LN-resident P14 T cell population regardless of Ag constellation.

Thus, we quantified the number of transferred CFSEbright P14

cells that had not proliferated in LNs containing 1C, 100C, or

control peptide pulsed DCs (Figure 2C).

Four hours after T cell transfer, similar numbers of undivided

P14 cells were recovered from popLNs in all conditions, indi-

cating that early T cell recruitment and retention were not sub-

stantially affected by our experimental manipulations (Figure 2C).

On days 2 and 4, nearly all P14 T cells in both FTY-720 treated

and control recipients of 1C or 100C DCs had divided at least

once, whereas Ag-free LNs contained mostly undivided cells

(Figure 2C). Thus, essentially all P14 cells that encountered 1C

DCs proliferated even though their interactions with DCs were

almost exclusively brief and dynamic.

Ag Dose Effects on Effector Burst Kinetics and Tn Cell
Apoptosis
Although our proliferation studies provided proof for efficient

T cell stimulation by both 1C and 100C DCs, cell division alone

might not necessarily predict the ensuing effector burst. Indeed,

during the first 48 hr, the absolute number of P14 T cells that had

divided at least once was similar in LNs draining 1C DCs and

100C DCs (Figure 3A); however, by 96 hr, LNs that received

100C DCs contained substantially more P14 cells than those

that received 1C DCs (p < 0.03). When expressed as a percent-

age of LN-resident lymphocytes (Figure 3B), the frequency of

P14 Teff cells at 48 hr was twice as high after treatment with

1C DCs (mean ± SEM: 1.94% ± 0.3%) than with 100C DCs
Im
(0.96% ± 0.16%). Although this difference did not reach statisti-

cal significance (p = 0.08), the degree of CFSE dilution at 48 hr

was similar in P14 cells that had encountered 1C and 100C

DCs, indicating that the early proliferative advantage in the 1C

setting was not due to accelerated division (Figure 2A).

The apparent delay in P14 Teff burst induced by 100C DCs

was caused by Ag-induced T cell apoptosis preceding the onset

of proliferation; approximately half of the P14 cells exposed to

100CDCswere apoptotic at 24 hr, whereasmuch less apoptosis

was seen with 1C DCs (Figures 3C and 3D). This curtailing of the

Teff response by high-dose Ag likely accounted for the lower P14

cell frequency among LN T cells at 48 hr; however, the 100C

stimulated cells continued to expand until 96 hr, whereas the

P14 cells exposed to 1C DC peaked at 48 hr and then declined

(Figure 3B). When 1C DC recipients were treated with FTY-

720, the number of P14 cells continued to climb in LNs until

day 4 (Figures 3E and 3F), indicating that 1C and 100C DC

induced differential egress from LNs after day 2.

CD8+ Teff Function after Low- and High-Dose
Ag Exposure
Having determined that 1C and 100C DCs induced equivalent

early P14 cell proliferation, we asked whether Ag dose affects

effector function by exposing P14 T cells to C-peptide, M-pep-

tide, or control peptide pulsed DCs in popLNs. P14 cells were

harvested 20 hr or 48 hr later and restimulated ex vivo to assess

effector activity. There was no significant difference in the fre-

quency or magnitude of IFN-g production in response to 1C or

100C DCs (Figures 4A and 4B). Likewise, when P14 T cells

were activated by either 1C or 100C DC for 48 hr, Ag-specific

in vivo cytotoxicity was similar (Figures 4C and 4D). Thus, mini-

mal antigenic constellations that do not promote stable contacts

with Ag-pulsed DCs can be sufficient to initiate Tn cell activation

and Teff differentiation.

Memory Differentiation Correlates with Ag Dose
and Stability of T Cell-DC Contacts
How does differential Ag presentation impact T cell memory

differentiation? We first tried to address this question by trans-

ferring CD8+ T cells from CD45.2+ P14xTcra�/� donors (from

Taconic) into congenic CD45.1+ recipients (from Jackson Labs

or Taconic) to monitor long-term persistence and recall of

CD45.2+ cells. However, the transferred cells disappearedwithin

�3–4 weeks (data not shown), suggesting that differences

between the P14xTcra�/� and both CD45.1+ strains (per their

vendors on a C57BL/6 background) elicited a host response

against cryptic alloantigens (Bhattacharya et al., 2006). Thus,

we sought alternatives for tracking of noncongenic transferred

T cells while avoiding concomitant activation of endogenous

T cells recognizing C-peptide. Because the half-life of C-peptide

in H-2Db is �2.4 hr (Henrickson et al., 2008), encounters occur-

ring before 18 hr after DC injection (when P14 Tn cells are trans-

ferred) would expose endogenous T cells to higher Ag doses that

presumably support stable contacts. P14 cell transfers were

deliberately timed so that the cells accessed LNs only when

the Ag dose on 1C DCs had fallen below the threshold at which

stable contacts occur.

By using two distinct recipient strains that could neither mount

an endogenous response against gp33–41 nor reject transferred
munity 39, 496–507, September 19, 2013 ª2013 Elsevier Inc. 499



Figure 2. High- and Low-Dose Antigen Both

Lead to the Majority of Transferred T Cells

Participating in Effector Response

Standard protocol (Figure 1A), with CD45.1 re-

cipients who received 1C or 100C DCs in the right

footpad and control DCs in the left footpad (to

serve as internal controls). Two hours after T cell

injection, anti-L-selectin antibody (Ab) and FTY-

720 (or vehicle alone) were injected to prevent

further T cell entry and exit, respectively. At 4 hr,

24 hr, and 96 hr, recipients were sacrificed and

quantitative flow cytometry with beads was used

to enumerate the number of remaining transferred

cells.

(A) Representative flow cytometry plots across

varied conditions, as labeled.

(B) Summary of percentage of transferred cells

that have proliferated at indicated time points

(vehicle-treated recipients).

(C) The number of total undivided, transferred cells

at indicated time points and conditions (n = 4 expt,

mean ± SD, 3–7 mice per condition, except 100C

at 4 hr with 2).
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P14xTcra�/� Tn cells, we could assess Ag-specific recall re-

sponses mediated exclusively by transferred cells. In both set-

tings, we applied our standard protocol for DC and P14 T cell

transfer (Figure 1A, but without anti-L-selectin), challenged

with LCMV (103 plaque-forming units [pfu] i.v.) after 30+ days

and 5 days later restimulated CD8 T cells ex vivo with gp33–41

to detect IFN-g-secreting P14 memory cells.

In the first model, we infused naive C57BL/6 mice with M-pep-

tide, which depletes endogenous CD8+ T cells recognizing the

gp33–41 epitope, creating a ‘‘hole’’ in the endogenous T cell

repertoire (Garza et al., 2000) and rendering mice incapable of

responding to gp33–41 (Figure S1). After LCMV rechallenge, re-

cipients of 1C DCs or control DCs contained equivalently low

numbers of gp33–41 reactive T cells, whereas 100C DC sensitized

mice had generated abundant P14 memory cells (Figure 5A). As

a second strategy, we tested the same protocol by using trans-

genic recipients (OT-IxRag1�/�) that expressed a single irrele-

vant TCR and could not respond to C-peptide or alloantigens.

Again, recipients of control DCs or 1C DCs contained few

gp33–41 reactive CD8+ T cells, whereas 100C DC recipients had

generated�5-fold morememory cells (Figure 5B). In both exper-

iments, virus-specific T cell responses were assessed as late as

5 days after LCMV challenge, providing ample time for even

small memory populations to ‘‘catch up.’’ The fact that there

was no statistical difference between 1C DC recipients and

control mice that harbored only non-antigen-specific Tn cells

suggests that 1C DCs completely failed to induce memory.

Transcription Profiles of T Cells Exposed to High- and
Low-Dose Antigenic Constellations
To explore at amolecular level how1Cand100CDCsensitization

induce such distinct outcomes in cell-cell interactions andmem-

ory differentiation, we compared transcription profiles of P14

T cells by using DNA microarrays (Haining et al., 2008). P14 cells

were activated following our standard protocol (Figure 1A) and
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sorted from single-cell suspensions of popLNs at 12 or 24 hr after

transfer. This timing of T cell harvestingwas chosenbecausepre-

vious MP-IVM results had shown that an intermediate Ag dose

(10C DC) induces phase 2 interactions that are maximal by

�12 hr and resolve after�20 hr (Mempel et al., 2004), suggesting

that the conditions encountered by CD8+ Tn cells within the first

day set the stage for a differential fate decision resulting either in

long-term memory or an abortive Teff response.

Activation by either 1C or 100C DCs altered the expression of

several 1,000 genes that were significantly up- or downregulated

compared to Tn cells. Many genes were similarly regulated in

both conditions, but a roughly equal number changed in only

one activating setting (Figure 6A). These differentially expressed

genes increased slightly in number from 12 to 24 hr (Figure 6A).

Among the transcripts that changed uniquely at 24 hr in the 100C

setting, 57% were upregulated, whereas most uniquely regu-

lated genes in the 1C setting were downregulated (67%). No

genes were reciprocally altered relative to Tn cells; i.e., no genes

increased in one activation setting and decreased in the other.

Principal components analysis (PCA) showed that P14 cell acti-

vation by 1C or 100C DCs resulted in transcriptional profiles that

were distinct and divergent between 12 and 24 hr but more

similar to each other than to Tn cells (Figure 6B).

A gene-set enrichment analysis (GSEA) (Haining and Wherry,

2010) was performed to compare our results to published gene

expression profiles from P14 Teff cells on day 8 (d8) after

LCMV infection (Wherry et al., 2007). Compared to Tn cells, the

d8 effector gene set was significantly enriched in T cells exposed

to 1C DCs (p < 0.001, FDR < 0.0001) and 100C DCs (p < 0.001,

FDR < 0.002) at both at 12 hr and 24 hr after stimulation (Fig-

ure 6C), indicating that effector differentiation commences as

early as 12 hr after activation.

There were also differences between transcriptional states in

the 1C and 100C settings, which were evident when results

were presented as a heatmap (Figure 6D) or volcano plot



Figure 3. Higher Dose Antigen Eventually

Yields Larger Effector Pool after a Larger

Early Apoptotic Loss

Standard protocol (Figure 1A), with CD45.1 re-

cipients who received 1C or 100C DCs in the right

footpad and control peptide-pulsed DCs in the left

footpad (to serve as internal controls). Two hours

after T cell injection, anti-L-selectin Ab and FTY-

720 (or vehicle alone) were injected to prevent

further T cell entry and exit, respectively.

(A, B, E, and F) At 4 hr, 48 hr, 96 hr, or 7 days,

recipients were sacrificed and quantitative flow

cytometry, with beads, was used to enumerate

the number of remaining transferred cells in the

popLN. This is presented as (A) the absolute

number of recovered CD45.2+ cells recovered at

4 hr, 48 hr, and 96 hr in the LN (vehicle treated;

mean ± SEM) and (F) vehicle or FTY treated

recipient (mean ± SEM). Number of CD45.2

(transferred and progeny of transferred) cells, as a

percentage of total LN cells at each time point,

either additionally treated with vehicle (B) or (E)

FTY-720 (A and B; E and F: n = 4 expt, 3–7 mice

per condition, except 100C at 4 hr with 2; B and E:

mean ± SD).

(C and D) Percentage of apoptotic transferred

CFSE labeled P14 T cells at 24 hr after T cell

transfer (Annexin V+, 7-AAD+), with 1C DC, 100C

DC, or DCs pulsed with control peptide, (C)

representative flow cytometry, and (D) summary of

percentage of cells which are apoptotic at 24 hr

(n = 3–6 expt and 3–8 mice per condition, bar at

median).

(G) The percentage at d7 of transferred CD4-

B220- cells in the LN, CD8+ T cell negative

selected spleen, and bone marrow that represents

recovered transferred cells. Left shows represen-

tative flow cytometry; right shows summary of

flow cytometry data (n = 2 expt, four mice per

condition).
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(Figure 6E). The list of genes differentially expressed between 1C

and 100C T cells included several transcriptional regulators, sug-

gesting that day 1 may constitute a cell-fate branch-point for

CD8+ T cells (Tables S1A and S1B). We also used GSEA with

curated gene sets to assess how gene families involved in

specific cellular processes or signaling pathways are modified

(Tables S2A and S2B), compared specific molecules of interest,

including costimulatory and inhibitory receptors, cytokines and

chemokines and their receptors, components of the apoptosis

pathway, and genes involved in CD8 T cell exhaustion and

effector states (Table S3A), and investigated genes of interest

within gene sets identified by GSEA (Tables 3B–SE).

Transcripts for actin and other cytoskeletal genes were upre-

gulated in T cells exposed to 1C DCs (Tables S2A, S2B, and

S2D), consistent with the sustained high T cell motility in this con-

dition and formation of serial kinapses with APCs (Moreau et al.,

2012). In T cells exposed to 100C DCs, effector cytokines and

lineage-specific transcription factors were significantly upregu-

lated compared to the 1C DC setting, including IL-2 (at 24 hr)

and IFN-g (at 12 hr and 24 hr; Tables S1A and S3E). Accordingly,
Im
there was a marked enrichment in transcription factors associ-

ated with effector and memory differentiation (Cui et al., 2011),

including TBX21 (T-bet) and Jun, in 100C DC exposed T cells

(Tables S3A and S3C). Given the transcriptional differences in

IFN-g and other cytokines, despite equivalent IFN-g protein

secretion upon in vitro restimulation at 20 hr and 48 hr (Figures

4A and 4B), we examined IFN-g production at 96 hr (Figure S2).

Consistent with the preceding upregulation of IFN-g messenger

RNA, T cells exposed to 100C DCs secreted significantly higher

amounts of IFN-g at 96 hr than T cells that had encountered 1C

DCs. 100C DC-exposed T cells also upregulated the Stat3

pathway (Tables S3A and S3C), which is upregulated in memory

precursors (Cui et al., 2011; Siegel et al., 2011). This differential

pattern of transcription factors and regulatory molecules is

consistent with the finding that stimulation with 1C versus

100C DCs profoundly influences the fate of P14 cells. Finally,

100C DC exposed T cells selectively upregulated many coinhibi-

tory molecules (Odorizzi and Wherry, 2012; Pardoll, 2012;

Youngblood et al., 2011), including PD-1, CD200, LAG-3, and

CTLA-4 (Tables S1A and S2A), which might reflect a mechanism
munity 39, 496–507, September 19, 2013 ª2013 Elsevier Inc. 501



Figure 4. Effector Function Is Equivalent on

Whether or Not T Cells Engage in Stable

Contacts with DCs

(A and B) Standard protocol (Figure 1A), with

CD45.1 recipients who received 1C or 100C DCs

in the right footpad and control DCs injected in left

footpad to serve as internal controls. At 20 hr and

48 hr, popLN were harvested and IFN-g produc-

tion was measured by cell-surface capture. (A)

Representative flow cytometry plots at 48 hr. (B)

Percentage of IFN-g positive transferred cells from

1C or 100C at 20 hr and 48 hr after P14 T cell

transfer. IFN-g positivity is calculated based on

IFN-g secretion from P14 T cells exposed to test

peptide-pulsed DCs corrected for the amounts of

secretion from P14 T cells exposed to control

peptide-pulsed DCs. (Percentage of IFN-g posi-

tivity by experiment ± SEM and MFI is presented

per mouse, mean ± SD; n = 4 or 5 mice 1C at 20

and 48 hr, n = 3 or 4 mice 100C at 20 and 48 hr;

n = 2 expt at 20 hr, n = 3 expt at 48 hr.)

(C and D) Control peptide DC (left), 100C DC

(middle), or 1C DC (right) were injected into the

footpads of recipient congenic (CD45.1) mice. P14

T cells were injected i.v. 18 hr later. After an

additional 48 hr, two target polyclonal B cell pop-

ulations (one pulsed with 10 mM M-peptide,

labeled with 2 mM CFSE; the other non-peptide

pulsed, labeled with 0.1 mM CFSE), were mixed at

a 1:1 ratio and injected i.v. Six hours later, the ratio

of CFSEhi:CFSElo B cells was assessed in the

popLN. (C) Representative plots of target cells

after in vivo lysis (representative of 3–9 mice per

group, n = 2 [100C] or 4 [all other concentrations]

expt). (D) Pooled specific lysis of Ag pulsed target

cells (per mouse,mean ± SD. n = 3–9mice per group, n = 2 [100C] or 4 [all other concentrations] expt). Percent specific lysis is calculated as (1�[ratio of unprimed/

ratio primed] 3 100), where the ratio is %(CFSElo nonpeptide pulsed)/(%CFSEhi peptide-pulsed) among transferred CFSE+ target B cells. See also Figure S2.
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to protect activated T cells from activation-induced cell death in

an ongoing response.

DISCUSSION

Optimal CD8+ T cell responses ensue when mature DCs present

Ag at a dose and duration sufficient to result in Tn cell activation

and differentiation into short-lived Teff and long-lived self-re-

newingmemory cells. We know little about the signals that deter-

mine whether, how, and what kind of memory cells arise, but

these decisions are thought to be regulated, in part, by the

dynamics of Tn cell interactions with DCs (Hugues, 2010). During

the first 48 hr after Tn cell entry into a LN containing DCs pulsed

with a high dose of Ag, these interactions usually follow a three-

phase program (Mempel et al., 2004). The duration of phase 1,

wherein Tn cells undergo short, serial encounters with DCs, is

inversely correlated with Ag dose (Henrickson et al., 2008).

Phase 2 features prolonged, stable conjugates during which

T cells commence cytokine production. Finally, during phase 3,

T cells return to short contacts and proliferate rapidly (Henrick-

son et al., 2008; Mempel et al., 2004).

It has been unclear how the interaction dynamics during each

phase influence immunological outcome. An early clue came

from in vitro imaging of T cells interacting with DCs in a collagen

gel, which showed that T cells proliferate even when they un-

dergo only transient interactions (Gunzer et al., 2000). While
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engaging in transient contacts in vivo, T cells are thought to inte-

grate stimuli during each APC encounter until the cumulative

signal exceeds a threshold for phase 2 transition (Henrickson

et al., 2008). The mechanism for in vivo integration of serial acti-

vation signals is unknown, but in vitro work has implicated the

Ras family of GTPases (Das et al., 2009) and the Akt pathway

(Kim et al., 2012). Phase 2 begins when the median duration

between Tn cells and DCs exceeds 30 min. This definition was

chosen because Tn cells require �30 min to form a mature

immunological synapse, a dynamic structure at the interface

with APCs that is stabilized by LFA-1 on T cells binding the adhe-

sion molecule ICAM-1 on APCs (Dustin and Groves, 2012; Lee

et al., 2002). LFA-1–ICAM-1 interactions are also needed for sta-

ble Ag-driven T cell/DC contacts in LNs, and ICAM-1-deficient

DCs presenting a high Ag dose fail to retain Teff cells at d12 after

activation (Scholer et al., 2008). Experimental manipulations that

induce T cell tolerance rather than Teff responses, e.g., Ag tar-

geting to immature DCs or promotion of coinhibitory signaling

in T cells, result in enhanced T cell motility and lack of stable

T cell/DC contacts (Fife et al., 2009; Hugues et al., 2004;

Schneider et al., 2006). However, for T cell priming by fully

mature wild-type DCs, it had been widely assumed that tight in-

teractions with sustained TCR signaling are needed (Fooksman

et al., 2009; Iezzi et al., 1998). Indeed, many MP-IVM studies

use reduced T cell motility and clusteringwith DCs as a surrogate

parameter for T cell activation.



Figure 5. Memory Differentiation Is Impaired without Stable DC-T Cell Contacts

(A and B) Purified CD11c+ DCs were pulsed with 10 mM control-peptide (or no peptide), 1C, or 100C and injected into the right footpad of recipient mice (in A,

peptide-depleted C57BL/6 recipients, in B, OT-I recipients) with LPS. 53 106 P14 T cells were injected i.v. 18 hr later. At d30+ after T cell transfer, each mouse

was infected i.v. with 103 pfu LCMV Armstrong, the spleens harvested at d5 p.i., and IFN-gwas stained by ICCS after a 5 hr ex vivo stimulation with (+) or without

(�) 1 mMC-peptide at 37�. (A) C57BL/6 recipients were treated at d10, 7, and 4with high-doseM-peptide to deplete them of Ag-specific cells. Upper graph shows

a summary of CD8+ IFNg+, and lower graph shows representative flow cytometry. (n = 3 expt, 3–5 mice, per condition; mean ± SEM). (B) Recipients are OT-I

Rag1�/�. Upper graph shows aCD8+ IFN-g+ and lower graph shows representative flow cytometry. Of note, in theOT-I recipients therewere occasionally animals

with extreme splenomegaly and expansion of lymph nodes (in all conditions), which were excluded from analysis in all settings. (n = 3–5 expt, 4–7 mice per

condition, mean ± SD per mouse).
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Our earlier studies with M-peptide, which has a higher affinity

and longer half-life in H2-Db than C-peptide, seem consistent

with this idea (Henrickson et al., 2008). Although pMHC com-

plexes with either C- or M-peptide have similar affinity for the

P14 TCR, DCs pulsed with the threshold peptide dose needed

to induce P14 proliferation support distinct interaction dynamics;

P14 cells that encounter threshold dose M-peptide pulsed DCs

transition to phase 2 (Henrickson et al., 2008), but they remained

in phase 1 when C-peptide was presented (this study). The most

likely explanation for this differential response is the distinct half-

life of complexes formed by M- versus C-peptide with H2-Db

(�6 hr versus �2.4 hr, respectively [Henrickson et al., 2008]).

Thus, after P14 cells encounter DCs presenting an amount of

Ag that is sufficient to trigger TCR signaling, but insufficient to

promote rapid transition to stable contacts, the T cells continue

to migrate, accumulating serial activation signals. During this

information-gathering period, pMHC complexes disintegrate at

a constant rate, which is higher for C- than M-peptide. After

several hours, the P14 cells activate LFA-1 enabling sustained

contacts, but only with DCs presenting a sufficient amount of

Ag to support synapse formation because TCR signaling is

needed for LFA-1 to assume a high affinity state and/or to redis-

tribute toward and within the emerging synapse. Long-lived

pMHC complexes with M-peptide remain available at this

time point, but C-peptide dissipates much faster, so P14 cells

cannot find suitable binding partners to engage in phase 2

interactions.
Im
How do the dynamics of T cell–APC interactions affect T cell

responses? Clearly, stable contacts are not needed to initiate

effector responses by CD8+ T cells in vivo; both 1C and 100C

DC induced efficient population-wide proliferation and Teff dif-

ferentiation of LN-resident Ag-specific Tn cells However, they

did so with distinct kinetics and consequences: exposure to

high-dose Ag triggered a transient early apoptotic contraction

of the responder population (likely due to AICD), followed by

vigorous and sustained expansion of LN-resident T cells for

�96 hr and long-term memory formation. By contrast, at the

1C threshold dose, early T cell apoptosis was modest, but after

48 hr the effector pool underwent accelerated attrition, ultimately

leading to a complete loss of Ag-experienced cells. While cyto-

kine production and cytotoxicity were equivalent for T cells

exposed to 1C and 100C DCs through 48 hr, proliferation and

IFN-g production by 1C T cells were markedly lower at 96 hr,

thus reflecting at a protein level the transcriptional differences

that appeared as early as 24 hr after Ag encounter.

We used two approaches to study memory differentiation,

which each allowed transfer of P14 Tn cells into recipients that

lacked gp33–41 responsive T cells, so the transferred cells could

be identified later based on their Ag responsiveness. Both

models restricted a short-lived nonproliferating Ag to a small

number of DCs in a single popLN. To ensure that the

number of P14 cells that encountered Ag was sufficient for

detection and analysis, we transferred 5 million P14 Tn cells

of which <0.1% were activated before the Ag disappeared.
munity 39, 496–507, September 19, 2013 ª2013 Elsevier Inc. 503



Figure 6. Comparison of cDNA Profiles by

DNA Microarray at 12 and 24 hr

Standard protocol (Figure 1A), with two types of

recipients who received 1C or 100C or no DCs in

the right footpad. The right popliteal LN was har-

vested at 12 or 24 hr after T cell transfer, single cell

suspension created, and stained with CD4, B220,

and CD19 (dump channel). Cells were then sorted

on a FACSAria as nondoublets, CMFDA+, and

dump channel negative. RNA was extracted with

standard phenol-chloroform techniques and then

concentrated and cleaned with the Agencourt

RNAdvance tissue kit. Of the total RNA extracted,

an aliquot was then amplified with commercially

available kits (NuGEN Pico). Following RNA

amplification, aliquots of cDNA from each sample

were assayed with the Agilent 2100 bioanalyzer

to ensure high-quality amplification prior to frag-

mentation, labeling, and hybridization to micro-

array. cDNA was then hybridized on Affymetrix

430_2 arrays for analysis of gene expression pat-

terns at a core facility.

(A) Venn diagrams of differentially expressed

genes. Left column shows 12 hr time point; right

column shows 24 hr time point. Upper row repre-

sents the number of genes that were upregulated

for versus naive, and the lower row represents the

number of genes that were downregulated versus

naive. For each Venn diagram, on the left are

genes that are differentially expressed between

T cells exposed to 1C versus adoptively trans-

ferred naive T cells not exposed to DCs, and on the

right are genes differentially expressed between T cells exposed to 100C versus adoptively transferred naive T cells not exposed to DCs. Genes included in these

diagrams have fold change statistics >0.5 Wilcoxon p value % 0.001.

(B) 2D principal components analysis (PCA) of all six conditions (control, 1C and 100C, each at 12 and 24 hr with each color indicating a separate concentration

at a specific time point), with arrows drawn from 12 hr to 24 hr data for each antigenic dose. Principle component (PC) 1 accounts for 28.3% and PC 2 accounts

for 11.32%.

(C) Enrichment of the d8 effector signature (Wherry et al., 2007) for the samples from T cells exposed to 1C and 100C samples at 24 hr.

(D) Heatmap of the 30most differentially expressed genes for each of three sample types (T cells exposed to noDCs, T cells exposed to 1C, and T cells exposed to

100C all at 24 hr) with some genes of interest noted by arrows on the right margin.

(E) Gene expression volcano plot, with –log 10 of the SAM p value on the y axis and log 2 fold change on the x axis, such that genes with higher expression in 1C

are on the left and genes with higher expression in 100C are on the right. Genes plotted were expert selected for their known relevance in T cell effector and

memory differentiation (arrays: n = 3 for control T cells at 24 hr, n = 10 for 1C at 24 hr, n = 7 for 100C at 24 hr; n = 3 for control T cells at 12 hr; n = 6 for 1C at 12 hr;

n = 6 for 100C at 12 hr). See also Figure S1 and Tables S1–S3.
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Consequently, unlike in a systemic viral infection, a substantial

population of unactivated transferred cells remained in recipi-

ents. To measure memory differentiation, we had to distinguish

this residual Tn cell population from true memory cells that arose

from Ag encounters in the popLN. This was possible because

memory cells respond more rapidly than Tn cells to Ag chal-

lenge, so memory cells could be revealed by measuring early

Ag-induced IFN-g secretion. No difference was found between

recipients of P14 Tn cells that had received 1C DCs or no Ag,

but there was a substantial increase in IFN-g-secreting cells in

recipients of 100C DCs, indicating that the latter had developed

memory.

These results establish that CD8+ T cells make differential

memory fate decisions in vivo as a consequence of the Ag

dose presented by DCs. In this context, we must consider three

parameters that distinguish how Tn cells experience encounters

with 1C versus 100C DCs: (1) the difference in density of cognate

pMHC complexes on a DC affects the number of TCRs that are

triggered simultaneously (instantaneous signal intensity); (2) the
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time interval between T cell entry into the LN until cognate

pMHC complexes have disappeared from DCs (signal persis-

tence); (3) 100C DCs, unlike 1C DCs, support phase 2-like con-

tacts, so TCR stimulation changes from an intermittent to a

continuous mode (signal duration) (Tkach and Altan-Bonnet,

2013). It remains to be determined whether and to what extent

each of these parameters contributes to memory differentiation.

Moreover, only a small fraction of P14 cells that encountered

100C DCs ultimately entered the memory pool, and it will be

important to understand how this subset is selected.

Regardless of the initial C-peptide pulsing dose and mode of

interaction, the very short half life of pMHC complexes is ex-

pected to result in a 99.9995% loss of C-peptide from pulsed

DCs at 24 hr after T cell injection (42 hr after DC pulsing), so

P14 cells in the present study did not experience cognate Ag

beyond the first day. Thus, signals received by CD8+ Tn cells

from DCs within a single day can precipitate a fate choice

between a transient effector burst and long-term memory

commitment. Accordingly, a recent study with anti-pMHC
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antibodies to terminate CD8+ Tn cell access to Ag showed that

Ag accessibility must exceed a threshold duration for optimal

memory cell differentiation (Blair et al., 2011). Similarly, during

microbial infections LN dwell time, proliferation and memory

differentiation of CD8+ T cell are inversely correlated with TCR

affinity for microbial Ags (Zehn et al., 2009).

It should be noted that the rules of memory-fate commitment

are almost certainly more complex whenCD8+ T cells respond to

infections. Aside from the concomitant stimulation of CD4+

T cells and other leukocytes that influence CD8+ T cells, even

pathogen-derived Ags with low affinity for MHC may afford

long signal persistence because proliferating pathogens

continue to produce antigenic material, and DCs phagocytose

and store such material for cross-presentation (Trombetta and

Mellman, 2005), whereas the short peptides used here are not

cross-presented (Cebrian et al., 2011). Of note, DCs in our sys-

tem did not present antigenic moieties to stimulate CD4+

T cells, so P14 cells did not receive ‘‘help’’ (Williams and Bevan,

2007); however, we coinjected LPS with DCs to promote in vivo

DCmaturation. The experimental system described here reflects

a reductionist approach allowing quantitative study of early

T cell-fate decisions. Our approach delivers a single Ag pulse

with a known (short) half-life on mature DCs providing a level

of control that is not feasible with an infectious Ag source. In

terms of clinical correlate, this model resembles immunization

with a subunit vaccine or autologous DC therapy.

Previous work on early CD8+ memory differentiation has tradi-

tionally examined Ag-experienced T cells expressing specific

markers that predict effector or memory fate (Kaech et al.,

2003) and are associated with widespread changes in gene

expression (Haining et al., 2008; Kaech et al., 2002; Sarkar

et al., 2008; Wherry et al., 2007). There are also transcriptional

differences between Teff andmemory T cells and betweenmem-

ory T cells and exhausted T cells (Doering et al., 2012), as well as

memory precursor T cells in mice (Sarkar et al., 2008) and

humans (Chowdhury et al., 2011). However, because well-

known memory-fate markers arise only several days after the

initial stimulus, the earliest transcriptional signatures of memory

precursors were obtained from this late interval, and the time

point when activated T cells first reach a memory-fate check-

point has been unclear, with active research in this area (Best

et al., 2013). The present results suggest that this checkpoint

is reached in vivo within less than a day of priming.

To begin to address the determinants and consequences of

this early checkpoint, we conducted a transcriptome analysis

of P14 cells that were sorted from popLNs 12 hr or 24 hr after

exposure to 1C or 100C DCs. Our results reveal a dramatic

and progressive divergence in transcriptional profiles even

though all environmental parameters other than Ag dose were

presumably identical. Interestingly, at 24 hr of stimulation, the

100C condition was associated with preferential upregulation

of at least three coinhibitory molecules, CTLA-4, LAG-3, and

PD-1. Because tight T cell–DC conjugates dissociate around

the 24 hr time point (Mempel et al., 2004), it is possible that these

molecules are involved in terminating phase 2. Several studies

report that coinhibitory signals antagonize the ‘‘stop’’ signal

that T cells receive upon TCR engagement (Fife et al., 2009;

Schneider et al., 2006). This signal attenuation may also protect

T cells from continued Ag stimulation, which might drive T cells
Im
toward an apoptosis-prone Teff phenotype (Mitchison, 1964).

Thus, phase 2 might be needed to induce a transcriptional pro-

gram that in aggregate dampens further TCR signaling during

the subsequent effector phase and promotes survival and differ-

entiation toward a memory phenotype.

In summary, we describe an experimental strategy in which

Ag-specific CD8+ Tn cells encounter in LNs mature DCs that

were pulsed with either a low or a high dose of a naturally occur-

ring cognate viral Ag. Only DCs presenting a high Ag dose sup-

ported phase 2-like tight interactions, whereas DCs pulsed with

either Ag dose induced vigorous early T cell proliferation and Teff

differentiation. The differential interactive behavior induced by

high- versus low-dose pulsed DCs was paralleled by distinct

transcriptional programs in activated T cells, and only T cells

that interacted with DCs presenting the high Ag dose gave rise

to sustained immunological memory. This suggests that infor-

mation exchange in phase 2 allows T cells to pass through a

critical early checkpoint that fosters Ag-specific long-term

protection and avoids immunological amnesia.

EXPERIMENTAL PROCEDURES

Mice

Male C57BL/6mice (Charles River Laboratories), congenic C57BL/6 (CD45.1+)

mice (Taconic Farms or Jackson Laboratories), OT-IRag1�/�, and P14 Tcra�/�

mice (Taconic Farms) were used at 6–10 weeks of age. Experiments were

performed in accordance with NIH guidelines and approved by the IACUC

of Harvard Medical School.

Reagents

M-peptide (KAVYNFATM), C-peptide (KAVYNFATC), and SIINFEKL were pur-

chased from New England Peptides and resuspended in deionized H20. Anti-

L-selectin mAb (Mel-14) was purchased from BD PharMingen or BioExpress.

All other mAbs were from BD PharMingen.

Cell Isolation for Adoptive Cell Transfer

DCs were purified by immunomagnetic cell sorting (�98% CD11c+, Miltenyi

Biotec) from spleens of C57BL/6 mice that had been implanted with a Flt-3L

secreting melanoma, as described (Mora et al., 2003). CD8+ T cells from

LNs and spleens of P14 Tcra�/� and OT-IRag1�/�mice were purified by nega-

tive immunomagnetic sorting (Miltenyi Biotec).

Flow Cytometry

Phenotyping of DCs and T cells was performed on a FACSCalibur or

FACSCanto analyzer (Becton Dickinson).

LCMV Infections

Mice were infected i.v. with 103 pfu LCMV Armstrong at various time points

after DC transfer with or without P14 T cell transfer. At d5 after infection,

mice were sacrificed and spleens and popLNs removed for flow cytometry

of intracellular IFN-g expression in CD8+ T cells.

Multiphoton Intravital Microscopy

DCs were pulsed with peptide and labeled for 20 min at 37�C with 10 mM

5-(and 6-)-([(4-chloromethyl)benzoyl] amino) tetramethylrhodamine (CMTMR)

or 7-amino-4-chloromethylcoumarin (CMAC; Invitrogen). We injected 5 3

105 DCs in 20 ml IMDM (with 10% FCS) containing 10 ng E. coli LPS (Sigma)

into the right hind footpad of recipient mice. T cell populations were labeled

for 15 min at 37�C with 4 mM 5-chloromethylfluorescein diacetate (CMFDA;

Invitrogen) or for 25 min at 37�C with 10 mM CMAC (dyes were swapped

between experiments). We gave 5 3 106 cells of each subset (1:1 ratio) to

recipients i.v. 18 hr after DC injection. After 2 hr, animals received 100 mg

Mel-14 i.v. The right popliteal LN was prepared for MP-IVM on a BioRad

2100MP system as described (Mempel et al., 2004).
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Statistics

When appropriate, significance of differences was calculated with Mann-

Whitney or Student’s t test. The bootstrap correction mean was calculated

for interaction durations and meandering indices for each data set (n = 100

interactions) (Manly, 1997).

Microarray Data Acquisition

Total RNA was isolated from TriZol with the Agencourt RNAdvance Tissue Kit

(Beckman Coulter) and was amplified with the WT-Ovation Pico RNA Amplifi-

cation and Labeling System (NuGEN). The cDNA was fragmented, labeled,

and hybridized to Affymetrix 430_2 microarrays (Affymetrix). The gene expres-

sion data set has been submitted to the NCBI/ GenBank GEO database (series

entry GSE49274).
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Shiow, L.R., Rosen, D.B., Brdicková, N., Xu, Y., An, J., Lanier, L.L., Cyster,

J.G., and Matloubian, M. (2006). CD69 acts downstream of interferon-alpha/

beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature

440, 540–544.

Siegel, A.M., Heimall, J., Freeman, A.F., Hsu, A.P., Brittain, E., Brenchley, J.M.,

Douek, D.C., Fahle, G.H., Cohen, J.I., Holland, S.M., and Milner, J.D. (2011). A

critical role for STAT3 transcription factor signaling in the development and

maintenance of human T cell memory. Immunity 35, 806–818.

Skokos, D., Shakhar, G., Varma, R., Waite, J.C., Cameron, T.O., Lindquist,

R.L., Schwickert, T., Nussenzweig, M.C., and Dustin, M.L. (2007). Peptide-

MHC potency governs dynamic interactions between T cells and dendritic

cells in lymph nodes. Nat. Immunol. 8, 835–844.

Stoll, S., Delon, J., Brotz, T.M., and Germain, R.N. (2002). Dynamic imaging of

T cell-dendritic cell interactions in lymph nodes. Science 296, 1873–1876.

Tkach, K., and Altan-Bonnet, G. (2013). T cell responses to antigen: hasty

proposals resolved through long engagements. Curr. Opin. Immunol. 25,

120–125.

Townsend, A., and Bodmer, H. (1989). Antigen recognition by class I-restricted

T lymphocytes. Annu. Rev. Immunol. 7, 601–624.

Trombetta, E.S., and Mellman, I. (2005). Cell biology of antigen processing

in vitro and in vivo. Annu. Rev. Immunol. 23, 975–1028.

von Andrian, U.H., and Mempel, T.R. (2003). Homing and cellular traffic in

lymph nodes. Nat. Rev. Immunol. 3, 867–878.

Wherry, E.J., Ha, S.J., Kaech, S.M., Haining, W.N., Sarkar, S., Kalia, V.,

Subramaniam, S., Blattman, J.N., Barber, D.L., and Ahmed, R. (2007).

Molecular signature of CD8+ T cell exhaustion during chronic viral infection.

Immunity 27, 670–684.

Williams, M.A., and Bevan, M.J. (2007). Effector and memory CTL differentia-

tion. Annu. Rev. Immunol. 25, 171–192.

Youngblood, B., Oestreich, K.J., Ha, S.J., Duraiswamy, J., Akondy, R.S., West,

E.E., Wei, Z., Lu, P., Austin, J.W., Riley, J.L., et al. (2011). Chronic virus infec-

tion enforces demethylation of the locus that encodes PD-1 in antigen-specific

CD8(+) T cells. Immunity 35, 400–412.

Zehn, D., Lee, S.Y., and Bevan, M.J. (2009). Complete but curtailed T-cell

response to very low-affinity antigen. Nature 458, 211–214.

Zinkernagel, R.M., and Doherty, P.C. (1974). Immunological surveillance

against altered self components by sensitised T lymphocytes in lymphocytic

choriomeningitis. Nature 251, 547–548.
munity 39, 496–507, September 19, 2013 ª2013 Elsevier Inc. 507


	Antigen Availability Determines CD8+ T Cell-Dendritic Cell Interaction Kinetics and Memory Fate Decisions
	Introduction
	Results
	MP-IVM Studies of Low-Dose Peptide-Pulsed DCs Interacting with Ag-Specific T Cells
	Proliferation after Tn Cell Exposure to High Versus Low Ag Constellations
	Ag Dose Effects on Effector Burst Kinetics and Tn Cell Apoptosis
	CD8+ Teff Function after Low- and High-Dose Ag Exposure
	Memory Differentiation Correlates with Ag Dose and Stability of T Cell-DC Contacts
	Transcription Profiles of T Cells Exposed to High- and Low-Dose Antigenic Constellations

	Discussion
	Experimental Procedures
	Mice
	Reagents
	Cell Isolation for Adoptive Cell Transfer
	Flow Cytometry
	LCMV Infections
	Multiphoton Intravital Microscopy
	Statistics
	Microarray Data Acquisition

	Accession Numbers
	Supplemental Information
	Acknowledgments
	References


