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SUMMARY

Deciphering the signaling networks that underlie
normal and disease processes remains a major chal-
lenge. Here, we report the discovery of signaling
components involved in the Toll-like receptor (TLR)
response of immune dendritic cells (DCs), including
a previously unkown pathway shared across
mammalian antiviral responses. By combining tran-
scriptional profiling, genetic and small-molecule
perturbations, and phosphoproteomics, we uncover
35 signaling regulators, including 16 known regula-
tors, involved in TLR signaling. In particular, we find
that Polo-like kinases (Plk) 2 and 4 are essential
components of antiviral pathways in vitro and in vivo
and activate a signaling branch involving a dozen
proteins, among which is Tnfaip2, a gene associated
with autoimmune diseases but whose role was
unknown. Our study illustrates the power of
combining systematic measurements and perturba-
tions to elucidate complex signaling circuits and
discover potential therapeutic targets.

INTRODUCTION

Signaling networks detect and respond to environmental

changes, and defects in their wiring can contribute to diseases.
For example, Toll-like receptors (TLRs) sense microbial mole-

cules and trigger signaling pathways critical for host defense

(Takeuchi and Akira, 2010). Genetic defects in components of

the TLR and other pathogen-sensing pathways have been linked

to human diseases. Hence, rational targeting of these pathways

should help in better manipulating immune responses associ-

ated with infections, autoimmunity, and vaccines (Hennessy

et al., 2010).

However, despite extensive studies, many components of

TLR and other biological networks are unknown, and many

genes associatedwith disease have not been assigned to a func-

tion or a pathway. A key challenge is thus to systemically dissect

mammalian signaling networks, by determining the functions of

their components and placing themwithin pathways. Previously,

we introduced an integrated experimental and computational

approach to decipher the TLR transcriptional network of immune

dendritic cells (DCs) (Amit et al., 2009), allowing us to identify

transcriptional regulators and to define their impact on TLR

responses in DCs. For example, we found a host of cell-cyle

regulators—Rbl1, Rb, Myc, Jun, and E2fs—that are required

for antiviral transcriptional responses in nondividing DCs.

Here, we adapt and expand this approach to the discovery

and validation of TLR signaling components in DCs (Figure S1

available online). First, to identify candidate components, we

rely on transcriptional feedbacks, whereby a signaling circuit

regulates the transcript levels of genes encoding some, but not

all, of its components (Amit et al., 2007; Fraser and Germain,

2009; Freeman, 2000). Second, we perturb these candidates

with shRNAs and measure the effects on a representative
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signature of >100 TLR-activated genes. Third, we use functional

phosphoproteomics to expand the pathway’s scope to com-

ponents whose mRNA levels may be unchanged upon TLR

activation. Applying this approach iteratively, we discovered 19

functional components, including a signaling arm mediated by

two Polo-like kinases (Plk2 and 4) that participate in regulating

well-established host antiviral pathways.

RESULTS

Transcripts for Signaling Components Are Regulated
upon TLR Stimulation
To identify candidate components of pathogen-sensing path-

ways, we used genome-wide mRNA profiles, previously mea-

sured at 10 time points along 24 hr following stimulation of

primary bone marrow-derived DCs (BMDCs) with lipopolysac-

charide (LPS; TLR4 agonist), polyinosinic:polycytidylic acid

(poly(I:C); recognized by TLR3 and the cytosolic viral sensor

MDA-5), or Pam3CSK4 (PAM; TLR2 agonist) (Amit et al., 2009).

These three TLRs activate transcriptional programs referred

to here as ‘‘inflammatory’’ (TLR2), ‘‘antiviral’’ (TLR3), or both

(TLR4) (Figure 1A) (Amit et al., 2009; Doyle et al., 2002).

Our analysis uncovered 280 genes annotated as known or

putative signaling molecules that were differentially expressed

followingstimulation:115kinases,69phosphatases,and96other

regulators, such as adaptors and scaffolds (Figure 1B, Table S1,

and Experimental Procedures). These 280 genes were enriched

for canonical pathways of the TLR network such as MAP kinase

(p < 1.22 3 10�15, overlap 25/87, hypergeometric test), TLR

(e.g., Myd88, Traf6, Irak4, Tbk1; p < 8.43 3 10�12, 21/86), and

PI3K (p < 2.58 3 10�8, 11/33) pathways, as well as the PYK2

pathway (p< 3.123 10�10, 12/29),whichwas recently associated

with the TLR system (Wang et al., 2010). Overall, 94 of the 280

genes (33%) were associated with the TLR network in the litera-

ture (Table S1), supporting the validity of our candidate selection

strategy. The remaining 186 genes (67%) represent candidate

TLR components. To test their putative function in TLR signaling,

we selected a subset of 23 candidates based on their strong

differential expression and to proportionally represent the five

main induced expression clusters (Figures 1B and 1C). We also

selected six canonical TLR components (Myd88, Mapk9, Tbk1,

Ikbke, Tank, andMap3k7) as benchmarks (Figures 1A and 1D).

A Perturbation Strategy Places Uncharacterized
Signaling Components within the Antiviral and
Inflammatory Pathways
We perturbed our 6 positive controls and 17 of the 23 candidates

in BMDCs using shRNA-encoding lentiviruses (6 candidates

showed poor knockdown efficiency) (Table S1). We stimulated

the cells with LPS and used a multiplex mRNA counting method

to measure the effect of gene silencing on the mRNA levels of

118TLR responsesignaturegenes, representing the inflammatory

and antiviral programs (Figure 2A). Notably, the expression of the

118 genes was not affected in BMDCs transduced with lentivirus

compared to untransduced cells (Amit et al., 2009). We deter-

mined statistically significant changes in the expression of signa-

ture transcripts upon individual knockdowns based on compar-

ison to 10 control genes, whose expression remains unchanged
854 Cell 147, 853–867, November 11, 2011 ª2011 Elsevier Inc.
upon TLR activation, and to control shRNAs (Experimental

Procedures). Finally, we associated signaling molecules and

downstream transcriptional regulators that may act in the same

pathway by comparing the perturbational profiles of the 23

signalingmolecules (6 canonical and 17 candidates) to each other

and to those of the 123 transcriptional regulators (including tran-

scription and chromatin factors and RNA-binding proteins) previ-

ously tested (Figures 2 and S2 and Table S2) (Amit et al., 2009).

Perturbing 5 of the 6 canonical signaling molecules strongly

affected the expression of TLR signature genes, consistent

with their known roles (Figure 2A and Table S2) and validating

our approach. For example, perturbing Myd88, a known inflam-

matory adaptor, specifically abrogated the transcription of

inflammatory genes (e.g.,Cxcl1, Il1a, Il1b, Ptgs2, Tnf; Figure 2A),

similar to perturbations of downstream inflammatory transcrip-

tion factors (e.g., Nfkb1, Nfkbiz; Figure 2B). In addition, Tank

acted as a negative regulator of a subset of antiviral genes (Fig-

ure 2A), as expected (Kawagoe et al., 2009), and Tbk1 knock-

down affected both antiviral and inflammatory outputs (Fig-

ure 2A), consistent with findings that Tbk1 regulates NF-kB

complexes (Barbie et al., 2009; Chien et al., 2006). Notably, Ikbke

(IKK-ε) knockdown did not affect our gene signature, consistent

with previous observations that IKK-ε�/� DCs respond normally

to LPS and viral challenges (Matsui et al., 2006). Thus, IKK-εmay

be either not functional or redundant in our system.

All of the 17 candidate signaling molecules tested, except Plk2

(discussed below), affected at least 6 of the 118 genes (on

average, 16.6 targets ± 10.4 standard deviation [SD]), and 12

affected more than 10% of the genes (Figures S2A and S2D).

Notably, perturbations of these 17 candidates did not affect

BMDC differentiation (88.3% ± 6.8% SD of CD11c+ cells;

Table S1). These effects are comparable to those of known

signaling molecules and transcriptional regulators in this system

(Figures S2B–S2E). For example, the receptor tyrosine kinase

Met, not previously associated with TLR signaling, affected

a number of signature genes similar to Tbk1 (Figures S2C

and S2D), in both the inflammatory and antiviral programs

(Figure 2A). Conversely, both the phosphatase Ptpre and the

adaptor Socs6 positively regulated the inflammatory program,

although negatively regulating some antiviral genes (Figure 2B).

Of the 17 candidates tested when we originally conducted this

screen, 10 have subsequently been reported in other studies

as functional in the TLR system (Table S1), providing an inde-

pendent confirmation. For example, here Map3k8 knockdown

affected both inflammatory and antiviral target genes (Figure 2A),

consistent with its reported role in the TLR pathways based on

Sluggish mice (Xiao et al., 2009).

We identified both primary (e.g., Myd88) and secondary

(e.g., Stat1) mediators of TLR responses. Although secondary

mediators are not part of the initial intracellular signaling

cascade, they are important physiological components of the

TLR response, and their pertubation can lead to phenotypic

outcomes similar to those of primary components. For example,

the receptor tyrosine kinase Mertk acted as both a positive and

negative regulator of some inflammatory and antiviral genes

(e.g., Ifnb1), respectively (Figure 2A), consistent with its reported

role as a secondary inhibitor of the TLR pathways (Rothlin et al.,

2007).
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Figure 1. mRNAs of Signaling Components Are Differentially Regulated upon TLR Stimulation

(A) Simplified schematic of the TLR2, 3, and 4 pathways (Takeuchi and Akira, 2010).

(B) mRNA expression profiles of differentially expressed signaling genes. Shown are expression profiles for 280 differentially expressed signaling genes (rows)

at different time points (columns): a control time course (no stimulation, Ctrl) and following stimulations with Pam3CSK4 (PAM), LPS, and poly(I:C). Tick marks:

time point poststimulation (0.5, 1, 2, 4, 6, 8, 12, 16, 24 hr). Shown are genes with at least a 1.7-fold change in expression compared to prestimulation levels in both

duplicates of at least one time point. The three leftmost columns indicate kinase (KIN), phosphatase (PSP), and signaling regulators (SIG) (black bars). Values from

duplicate arrays were collapsed and gene-expression profiles were hierarchically clustered. The rightmost color-coded column indicates the five major

expression clusters.

(C and D) mRNA expression profiles of candidate (C) and canonical (D) TLR signaling regulators selected for subsequent experiments. The color-coding of the

gene names highlights the corresponding expression clusters from the complete matrix from (A).

See also Figure S1 and Table S1.
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Figure 2. A Perturbation Strategy Assigns Function to Signaling Components within the TLR Pathways

(A) Perturbation profiles of 6 canonical (purple) and 17 candidate (blue) signaling components and 20 core TLR transcriptional regulators belonging to the

inflammatory (orange) and the antiviral (green) programs. Shown are the perturbed regulators (columns) and their statistically significant effects (FDR < 0.02) on

each of the 118 TLR signature genes (rows). Red: significant activating relation (target gene expression decreased following perturbation); blue: significant

repressing relation (target gene expression increased following perturbation); white: no significant effect. The rightmost column categorizes signature genes into

antiviral (light gray) and inflammatory (dark gray) programs.

(B) Functional characterization based on similarity of perturbation profiles. Shown is a correlation (Pearson) matrix of the perturbation profiles from (A). Yellow:

positive correlation; purple: negative correlation; black: no correlation.

See also Figure S2 and Table S2.
Crkl Modulates JNK-Mediated Antiviral Signaling
in the TLR Network
Among the 17 candidate signaling proteins, perturbation of the

tyrosine kinase adaptor Crkl decreased expression of 13% of

the signature genes, especially antiviral ones (Figures 2A and

S2D). Crkl belongs to several signaling pathways, including early

lymphocyte activation (Birge et al., 2009), but has not been asso-

ciated with the TLR network. Crkl’s perturbation profile closely

resembled those of known antiviral regulators, most notably

Jnk2 (Mapk9; Chu et al., 1999) (Figures 2A and 3A). Indeed,

when Crkl�/� DCs were stimulated with LPS, the expression of
856 Cell 147, 853–867, November 11, 2011 ª2011 Elsevier Inc.
antiviral cytokines (Cxcl10, Ifnb1) was strongly reduced (Fig-

ure 3B, left and middle), but that of an inflammatory cytokine

(Cxcl1) was unaffected (Figure 3B, right).

To test whether Crkl is a primary component of the TLR

pathway, we determined whether Crkl phosphorylation is rapidly

modified after TLR signaling initiation. Using SILAC-based (Ong

et al., 2002) quantitative phosphoproteomics, we identified and

quantified 62 phosphotyrosine (pTyr)-containing peptides from

BMDCs stimulated with LPS for 30 min (Figure 3C, Table S3,

and Experimental Procedures). Of these 62 phosphopeptides,

7 and 9 were significantly up- or downregulated, respectively
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(A) Comparison of Crkl and Mapk9 knockdown profiles. Shown are the effects of Crkl and Mapk9 perturbation (columns) on the 118 signature genes (rows).

Data were extracted from Figure 2A.

(B) Inhibition of transcription of antiviral cytokines in Crkl�/� BMDCs. Shown are mRNA levels (qPCR; relative to t = 0) for Ifnb1 (left), Cxcl10 (middle), and Cxcl1

(right) in three replicates per time point. Error bars represent the standard error of the mean (SEM) (n = 3 mice).

(C) Crkl phosphorylation is induced following LPS stimulation. Top: schematic depiction of experimental workflow. From left: Protein lysates from unstimulated

(control) and LPS-treated BMDCs grown in ‘‘light’’ and ‘‘heavy’’ SILAC medium were mixed (1:1) and digested into peptides with trypsin before phosphotyrosine

(pY) peptide enrichment by immunoprecipitation and LC-MS/MS analysis. Bottom: Shown are the differential phosphorylation levels (log 2 ratios, y axis) of all
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See also Table S3.
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(Figure 3C and Table S3). A phosphopeptide derived from Crkl

(Y132)—one of the top 6 induced phosphopeptides—was

induced 2.1-fold (Figure 3C). This indicates that Crkl is likely acti-

vated directly downstream of TLR4 signaling.

Several lines of evidence suggest that Crkl acts through Jnk2

(Mapk9) signaling. First, the MAP kinase Jnk2 (Mapk9) is coregu-

lated at the phosphorylation level with Crkl upon LPS stimulation

(Figure 3C). Second, the Crk adaptor family—including CrkI,

CrkII, and Crkl—has been shown to modulate Jnk activity in

growth factor and IFN signaling (Birge et al., 2009; Hrincius

et al., 2010). Third, the perturbation profiles of Mapk9 and Crkl

are strikingly similar (Figure 3A). These observations suggest

that Crkl modulates Jnk-mediated antiviral signaling in the

TLR4 pathway, providing a possible explanation for why the

NS1 protein of influenza A virus may target Crkl (Heikkinen

et al., 2008; Hrincius et al., 2010).

Polo-like Kinases Are Critical Activators of the Antiviral
Program
To discover potential drug targets among our 17 candidates, we

next focused on Plk2, a well-known cell-cycle regulator and drug

target (Strebhardt, 2010). The roles of Plks in nondividing, differ-

entiated cells are poorly defined (Archambault and Glover, 2009;

Strebhardt, 2010).We have previously shown that transcriptional

regulators of cell-cycle processes (e.g., Rbl1, Rb, Myc, Jun,

E2fs) are co-opted to function in the antiviral responses in DCs

(Amit et al., 2009). However, neither knockdown (Figure 2A) nor

knockout (Figure S3A) of Plk2 in BMDCs had any effect on the

TLR response. We hypothesized that this could be due to func-

tional redundancy with another Plk, as Plk4 mRNA was induced

in DCs similarly to Plk2 (Figure 4A), albeit at a lower amplitude

(and thus was below our threshold for inclusion in the initial

candidate list). Interestingly, functional redundancy between

Plk2 and 4 has been suggested to account for the viability of

Plk2-deficient mice (Strebhardt, 2010), and Plk2 and 4 have

been reported to function together in centriole duplication

(Chang et al., 2010; Cizmecioglu et al., 2008).

To test our hypothesis, we simultaneously perturbed Plk2 and

4 in BMDCs using two independent mixes of different pairs of

shPlk2/shPlk4 (Figure S3B and Experimental Procedures). We

observed a significant and specific decrease in the expression

of 21 antiviral genes (Figure 4B). For example, the antiviral cyto-

kines Ifnb1 and Cxcl10 mRNAs were decreased, whereas the

expression of the inflammatory geneCxcl1 and almost all inflam-

matory signature genes remained unaffected (Figure 4C). Two

recent reports suggested a role for Plk1 alone as a negative regu-

lator of MAVS (Vitour et al., 2009) and NF-kB (Zhang et al., 2010)

in cell lines. However, knockdown of either Plk1 or 3 in BMDCs

did not affect the TLR transcriptional response (Figure S3C

and Table S2). Notably, BMDC viability was unaffected by lenti-
(C) Double knockdown of Plk2 and 4 represses antiviral cytokine mRNAs. Shown a

cytokines (Ifnb1 and Cxcl10) and for an inflammatory cytokine (Cxcl1), following

(Plk2/4-1, Plk2/4-2). Three replicates for each experiment; error bars are the SEM

(D and E) BI 2536 specifically abrogates transcription of antiviral genes witho

Pam3CSK4. Shown aremRNA levels (qPCR; relative to t = 0) for 12 indicated antivi

color bars) or DMSO vehicle (light color bars) and stimulated for 0, 2, or 4 hr with

See also Figures S3 and S4 and Table S4.
viral shRNA transduction targeting Plk1, 2, 3, or 4 individually or

Plk2 and 4 together (based on mRNA levels of control genes;

Table S2). Thus, in BMDCs, Plk2 and 4, but likely not Plk1 or 3,

are critical regulators of antiviral but not cell-cycle pathways.

A Small-Molecule Inhibitor of Plks Represses Antiviral
Gene Expression and IRF3 Translocation in DCs
We next targeted Plks in BMDCs using BI 2536, a commercial

pan-specific Plk small-molecule inhibitor (Steegmaier et al.,

2007). We compared genome-wide mRNA profiles from BMDCs

treated with either BI 2536 or DMSO vehicle before stimulation

with LPS or poly(I:C) (Experimental Procedures). BI 2536 treat-

ment repressed mostly antiviral gene expression compared to

DMSO (99/193 genes in response to poly(I:C), p < 1 3 10�71,

hypergeometric test; 67/194 in response to LPS; Table S4).

The 311 unique LPS- and/or poly(I:C)-induced genes that are

repressed by BI 2536 are significantly enriched for genes related

to cytokine signaling (e.g., IL-10, type I IFNs, IL-1), TLR signaling,

and DC signaling and for gene ontology (GO) processes related

to defense and immune responses (Figure S4A). Consistent with

the array data, BI 2536 strongly inhibited the expression of 12

well-studied antiviral genes, whereas inflammatory gene expres-

sion remained largely unaffected in DCs stimulated with LPS,

poly(I:C), or Pam3CSK4, as measured by qPCR (Figure 4D).

BI 2536 reduced the mRNA levels of Cxcl10 and Ifnb1 (by

qPCR) and of secreted IFN-b in a dose-dependent manner,

whereasCxcl1 expression was not significantly affected (Figures

S4B and S4C). Importantly, BI 2536 treatment prestimulation

impacted neither the viability nor the cell-cycle state of BMDCs

(Figures S4D and S4E), suggesting that Plk inhibition does not

act through cell-cycle effects. Consistent with our shRNA and

BI 2536 perturbations, two other pan-Plk inhibitors—structurally

unrelated to BI 2536—also repressed Ifnb1 and Cxcl10 expres-

sion without affecting Cxcl1 (Figure S4F). This strongly suggests

that the effects induced by these perturbations are due to

Plk inhibition and not off-target effects. Furthermore, we

observed a similar inhibitory effect of BI 2536 on Ifnb1 induction

in Ifnar1�/� and wild-type BMDCs, demonstrating that Plks

act directly downstream of TLR activation and not in an auto-

crine/paracrine feedback loop mediated by IFN receptor

signaling (Figure S4G). This is consistent with a recent phospho-

proteomic study reporting an enrichment for Plk substrates as

early as 15 min after LPS stimulation in macrophages (Weintz

et al., 2010).

We next used confocal microscopy to monitor the effect of BI

2536 on the subcellular localization of IRF3, a key antiviral tran-

scription factor. To more effectively deliver the drug, we plated

BMDCs on vertical silicon nanowires (Shalek et al., 2010) pre-

coated with BI 2536 prestimulation. Nanowires alone had no

effect on the TLR response (Figures 5A and S5A). BI 2536
re expression levels (qPCR) relative to control shRNAs (control) for two antiviral

LPS stimulation in BMDCs using two independent combinations of shRNAs

.

ut affecting inflammatory genes following stimulation with LPS, poly(I:C), or

ral (D) and 12 inflammatory (E) genes in BMDCs treatedwith BI 2536 (1 mM; dark

LPS (dark and light). Error bars represent the SEM.
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(A) DCs on NW undergo normal morphological changes upon LPS stimulation. Shown are electron micrographs of BMDCs plated on bare vertical silicon NW that

were left unstimulated (left; control) or stimulated with LPS (right). Scale bars, 5 mm.

(B–E) BI 2536 inhibits IRF3, but not NF-kB p65, nuclear translocation following TLR stimulation. (B and D) Shown are confocal micrographs of BMDCs plated on

vertical silicon NW precoated with vehicle control (DMSO; B and D), Plk inhibitor (BI 2536; B and D), or control Jnk inhibitor (SP 600125; B) and stimulated with

poly(I:C) for 2 hr (B) or LPS for 30 min (D) (reflecting peak time of nuclear translocation for IRF3 and NF-kB p65, respectively) or left unstimulated (B and D). Cells

were analyzed for DAPI (B and D), IRF3 (B), and NF-kB p65 subunit (D) staining. Scale bars, 5 mM. (C and E) Nuclear translocation (from confocal micrographs) of
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each experiment; error bars are the SEM.

See also Figure S5.
inhibited IRF3 nuclear translocation in a dose-dependent

manner upon poly(I:C) or LPS stimulation, whereas the control

JNK inhibitor SP 600125 had no effect (Figures 5B, 5C, and

S5B). On the other hand, BI 2536 did not affect NF-kB p65 local-
860 Cell 147, 853–867, November 11, 2011 ª2011 Elsevier Inc.
ization (Figures 5D and 5E). Notably, IRF3 translocation was also

decreased when delivering BI 2536 in solution, but to a lesser

extent compared to nanowire-mediated delivery (Figure S5C),

highlighting the utility of highly efficient drug delivery methods



to induce homogeneous effects in single-cell assays. Altogether,

these results place Plk2 and 4 as critical regulators of the antiviral

program, upstream of a major antiviral transcription factor.

Plks Are Essential for Activation of All Well-Established
IFN-Inducing Pathways in Conventional and
Plasmacytoid DCs
DCs can be broadly categorized into two major subtypes—

conventional and plasmacytoid DCs—each relying on distinct

mechanisms to induce type I IFNs and antiviral gene expression

(Blasius and Beutler, 2010). In conventional DCs (cDCs), antiviral

responses are activated through TLR4/3 signaling (via TRIF) or

through the cytosolic sensors RIG-I or MDA-5 (via MAVS) (Fig-

ure 6A). In plasmacytoid DCs (pDCs; specialized IFN-producing

cells), the antiviral response depends solely on endosomal TLR7

and 9 that signal via MYD88 (Figure 6A) (Blasius and Beutler,

2010; Takeuchi and Akira, 2010).

BI 2536 treatment showed that Plks are essential for the viral-

sensing pathways in both cDCs and pDCs. In cDCs, BI 2536

inhibited the transcription of antiviral genes (Ifnb1 and Cxcl10)

upon infection with each of four viruses: vesicular stomatitis virus

(VSV; Figure 6B, top), Sendai virus (SeV; Figure S6A, top), New-

castle disease virus (NDV; Figure S6A, bottom) (all three sensed

through RIG-I), and encephalomyocarditis virus (EMCV), sensed

through MDA-5 (Figure 6B, bottom and Experimental Proce-

dures). Notably, BI 2536 neither affected the mRNA level of

Cxcl1 (an inflammatory cytokine) in any of the four cases nor

affected the response to heat-killed Listeria monocytogenes,

a natural TLR2 agonist (Figures 6B, S6A, and S6B). In pDCs, BI

2536 treatment nearly abrogated the transcription of mRNAs

for the antiviral cytokines Ifnb1, Ifna2, and Cxcl10 after stimula-

tion with type A CpG oligonucleotides (CpG-A) or infection with

EMCV, sensed by TLR9 and 7, respectively (Figures 6C and

S6C and Experimental Procedures). Conversely, in pDCs stimu-

lated with CpG-B—a ligand known to activate inflammatory

pathways but not IFN-inducing pathways—BI 2536 treatment

decreased Cxcl10 mRNA, while moderately increasing Cxcl1

mRNA (Figure 6C). Finally, of our 118 signature genes, BI 2536

repressed genes induced by CpG-A alone or by both CpG-A

and -B, although having aminor effect, if any, on CpG-B-specific

genes in pDCs (Figure 6D and Table S5). These findingsmay help

reveal the poorly characterized molecular determinants of IFN

production in pDCs (Reizis et al., 2011) and demonstrate a critical

role for Plks across all well-known IFN-inducing pathways.

Plks Are Essential in the Control of Host Antiviral
Responses
To assess the impact of Plk inhibition on the outcome of viral

infection, we infected primary mouse lung fibroblasts (MLFs)

with influenza virus. BI 2536-treated MLFs infected with influ-

enza failed to produce interferon (Figure 6E) and showed

elevated replication of both wild-type (PR8) and poorly repli-

cating mutant (DNS1) viruses (Figure 6F). The reduced interferon

response was not due to drug-induced toxicity (Figure 6G).

Next, we tested the effects of Plk inhibition in virally infected

mice. BI 2536 exhibits good tolerability in mice (Steegmaier

et al., 2007) and humans (Mross et al., 2008) and is currently in

phase II clinical trials as an antitumor agent in several cancers
(Strebhardt, 2010). Given its efficacy and safety in vivo, we tested

whether BI 2536 would also affect the response to viral infection

in animals. In mice infected with VSV, BI 2536 strongly sup-

pressed mRNA production in popliteal lymph nodes for type I

IFNs (Ifnb1, Ifna2) and Cxcl10 but did not affect Cxcl1 mRNA

induction (all compared to vehicle control; Figures 6H and

S6D). Concomitantly, VSV replication in the lymph node rapidly

increased as reflected by elevated VSV RNA levels (Figure 6I),

comparable to the observed phenotype of VSV-infected

Ifnar1�/�mice (Iannaconeet al., 2010). Because in theVSVmodel

used here type I IFNs are produced by both infected CD169+

subcapsular sinus macrophages and pDCs (Iannacone et al.,

2010), we cannot distinguish whether Plk inhibition affects

macrophages, pDCs, or both. Nevertheless, our results confirm

thephysiological importance of Plks in the host antiviral response

in both ex vivo primary MLFs and in vivo mouse lymph nodes.

Plks Affect the Phosphorylation of Dozens of Proteins
Post-LPS Stimulation, including Known and Candidate
Antiviral Regulators
Wenext sought to discover the signaling pathways between Plks

and antiviral gene transcription. We used microwestern arrays

(MWAs) (Ciaccio et al., 2010) to measure changes in the phos-

phorylation and protein levels of 20 and 6 TLR pathway proteins,

respectively, in BMDCs at each of 12 combinations of four time

points (0, 20, 40, 80 min after LPS stimulation) and three pertur-

bations (vehicle control, BI 2536, and negative control JNK inhib-

itor SP 600125) (Table S6). Although LPS stimulation alone led to

the expected changes (e.g., early peak of phosphorylation for

ERK1/2, p38, andMapkapk2 and rapid degradation of IkBa; Fig-

ure 7A), BI 2536 surprisingly did not cause any significant

changes (Figures 7A, S7A, and S7B). We therefore hypothesized

that Plks could affect previously unrecognized regulators of IFN-

inducing pathways and/or known regulators with no existing

antibodies to specific phosphosites.

Next, we used SILAC-based unbiased phosphoproteomics

(Figure 7B, top) (Villén and Gygi, 2008) to compare the levels

of phosphotyrosine, -threonine, and -serine peptides following

stimulation with LPS (for 30 or 120 min) in BMDCs pretreated

with BI 2536 versus those treated with vehicle (DMSO). We iden-

tified and quantified 5,061 and 5,997 phosphopeptides after

30 and 120 min, respectively, for a total of 10,236 individual

phosphosites (Figure 7B and Table S6). BI 2536 substantially

affected the TLR phosphoproteome, leading to a significant

(p < 0.001) change in the level of 510 phosphopeptides derived

from 413 distinct proteins (Figure 7B and Table S6). Further sup-

porting our results, 35% (2489/7018) of the phosphosites we

identified were recently reported in mouse bonemarrow-derived

macrophages treated with LPS (Figure S7C, left) (Weintz et al.,

2010), and 483 of our phosphosites were among 1,858 sites

(26%) reported in a phosphoproteomic study of LPS signaling

in a macrophage cell line (Figure S7C, left) (Sharma et al.,

2010). A comparison of the phosphosites of known kinases

showed similar overlaps between the three studies (Figure S7C,

right).

The Plk-dependent phosphoproteins include several known

regulators of antiviral pathways (e.g., Prdm1, Fos, Unc13d) (Cro-

zat et al., 2007; Keller and Maniatis, 1991; Takayanagi et al.,
Cell 147, 853–867, November 11, 2011 ª2011 Elsevier Inc. 861
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Figure 6. Plks Are Critical in the Induction of Type I Interferons In Vitro and In Vivo

(A) IFN-inducing pathways in cDCs and pDCs.

(B and C) BI 2536 inhibits mRNA levels for antiviral cytokines in response to diverse stimuli in cDCs and pDCs. Shown are Ifnb1, Cxcl10, and Cxcl1 mRNA

levels (qPCR; relative to t = 0) in cells treated with BI 2536 (1 mM; white bars) or DMSO vehicle (black bars) in cDCs (B) infected with VSV (multiplicity of infection
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2002), as well as many additional protein candidates with no

previously known function in viral sensing (Figure 7B and Table

S6). Notably, proteins involved in the TBK1/IKK-ε/IRF3 axis

were detected and quantified, but their phosphorylation levels

were unchanged upon Plk inhibiton (Table S6), consistent

with the MWA data. Conversely, Plk inhibition with BI 2536

decreased the phosphorylation levels of cell-cycle regulators

of the Jun family of transcriptional regulators (i.e., Jund) that

we previously found to be co-opted by antiviral pathways

(Amit et al., 2009). BI 2536 treatment also decreased the phos-

phorylation levels of the mitotic kinases Nek6 and Nek7 (Fig-

ure 7B). The recent observation that the phosphorylation of

Nek6 substrates is increased following LPS stimulation inmacro-

phages (Weintz et al., 2010) indirectly corroborates our finding

that Nek6may be active in TLR signaling. To test the role of these

Plk-dependent candidates, we returned to our shRNA perturba-

tion-based approach.

Plk-Dependent Phosphoproteins Affect
the Antiviral Response
We perturbed 25 Plk-dependent phosphoproteins (Table S7),

using shRNA perturbation in BMDCs followed by qPCR and TLR

gene signature measurements. These candidates satisfied three

criteria: (1) there was no prior knowledge of their function in

viral-sensing pathways; (2) their phosphoprotein levels were con-

sistently up- or downregulated upon BI 2536 treatment (in two

independent experiments); and (3) they had detectable mRNA

expression and/or differential expression upon stimulation.

Of the 18 phosphoproteins showing efficient knockdown, 11

caused a significant decrease in Ifnb1 mRNA levels with a single

shRNA (Sash1, Dock8, Nek6, Nek7, Nfatc2, and Ankrd17; Fig-

ure S7D) or with two independent shRNAs (Tnfaip2, Samsn1,

Arhgap21, Mark2, and Zc3h14; Figure S7E). Decrease in

Cxcl10 expression was less prominent, consistent with our

previous observations of BI 2536’s weaker effect on this cytokine

during LPS stimulation (Figures S7D and S7E, far right panels).

Each of the 11 Plk-dependent phosphoproteins tested affected

at least 9 targets in the 118-gene signature (on average, 39

targets ± 30 SD; Figure 7C), and 9 affected more than 10% of

the targets in the TLR gene signature (Figure 7C).

Nine of the 11 Plk-dependent phosphoproteins affected the

TLR signature comparably to major antiviral regulators (Fig-

ure 7D). For example, the knockdown profiles of Samsn1,

Dock8, and Sash1 were closely correlated to those of Stat and

Irf family members (Figure 7D), and those of Tnfaip2 and
[moi] 1; B, top) or with EMCV (moi 10; B, bottom) and in pDCs (C) stimulated w

experiment; error bars are the SEM.

(D) BI 2536 inhibits the CpG-A response but has little effect on the CpG-B respons

pDCs treated with DMSO vehicle or BI 2536 (1 mM) and left untreated (Ctrl) or stim

CpG-A-specific (top), CpG-B-specific (bottom), and shared by CpG-A and -B (m

(E–G) BI 2536 inhibits IFN-b production in primary MLFs, leading to an increase in

(DMSO; black bars) were infectedwith influenzaDNS1 or PR8 strains at indicated

replication as measured by luciferase (Luc) activity in reporter cells (F), and cell v

(H and I) BI 2536 inhibits antiviral cytokine mRNA production, while increasing vir

mRNA (H) and VSV viral RNA (I) levels (qPCR; relative to uninfected animals) from

vehicle (black circles) prior to and during the course of infection with VSV (intra-fo

animal (n = 3). Data are representative of three independent experiments for eac

See also Figure S6 and Table S5.
Zc3h14 were most correlated to the Plk2/4 double knockdown.

Interestingly, Tnfaip2, a protein of unknown molecular function,

has been associated with rheumatoid arthritis and autoimmune

myocarditis in genome-wide association studies (Wellcome

Trust Case Control Consortium, 2007; Kuan et al., 1999). Our

findings provide a potential molecular context for this disease

association.

DISCUSSION

Using an integrative strategy combining transcriptomics,

genetic and chemical perturbations, and unbiased phosphopro-

teomics, we established a role for Plks in host defense pathways

inducing type I IFNs, likely by controlling the phosphorylation

and activity of a module of at least 11 components (Figure 7E).

Our findings and approach open up several avenues for future

investigations.

Consistent with our finding that cell-cycle transcription factors

play a role in antiviral responses (Amit et al., 2009), we identified

several cell-cycle kinases (Plks, Neks) as important regulators

of these responses. Despite extensive studies on the role of

Plk1 in mitosis, the functions of its paralogs—Plk2, 3, and 4—

are poorly defined (Strebhardt, 2010). Although they are less

essential than Plk1 in regulating cell division, their roles in nondi-

viding cells such as neurons are emerging (Archambault and

Glover, 2009; Seeburg et al., 2005). Interestingly, silencing of

both Plk2 and 4 was required to reveal their importance in

antiviral responses, highlighting the necessity of epistasis

analysis in studying mammalian signaling networks. Although it

is currently not feasible to screen for genetic interactions at

a genome-wide scale, it will be interesting to develop innovative

approaches to uncover them.

BI 2536 blocked the nuclear translocation of IRF3 without

affecting its phosphorylation level (based on MWAs and phos-

phoproteomics). A similar phenomenon has been reported for

NF-kB (Ye et al., 2011). This suggests that IRF3 translocation

in our system is likely to be regulated by a mechanism that

does not impact phosphorylation.

Furthermore, Plk inhibition suppresses type I IFN production

in vivo during viral infection—a finding that has potential clinical

implications. Indeed, disease activity in patients with Systemic

Lupus Erythematosus (SLE) correlates with IFN expression

signatures (Banchereau and Pascual, 2006), and lupus-prone

mice exhibit reduced symptoms upon treatment with a dual

inhibitor of TLR7 and 9 (Barrat and Coffman, 2008) or deletion
ith CpG type A or B or infected with EMCV (moi 10). Three replicates in each

e. Shown are mRNA levels (nCounter) for the 118 TLR signature genes (rows) in

ulated with CpG-A or -B for 6 hr (columns). Three clusters of genes are shown:

iddle).

viral replication. MLFs treated with BI 2536 (1 mM; white bars) or vehicle control

mois. Shown are Ifnb1mRNA levels measured by qPCR (relative to t = 0; E), viral

iability measured by CellTiter-Glo assay (G). Error bars represent the SEM.

al replication during in vivo VSV infection. Shown are Ifnb1, Cxcl10, and Cxcl1

popliteal lymph nodes of mice injected with BI 2536 (white circles) or DMSO

otpad). Nodes were harvested 6 hr post-infection. Each circle represents one

h condition.
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(A) BI 2536 does not affect phosphorylation and protein levels of known TLR signaling nodes. Shown are representative MWA (see Experimental Procedures)
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of the IFN receptor (Santiago-Raber et al., 2003). Thus, testing

the effect of BI 2536 on a mouse model of lupus will be key to

assess the potential therapeutic implications of Plk inhibition

for SLE.

Our approach may be applicable for characterizing the func-

tions of genes reported in genome-wide association studies

(e.g., Tnfaip2), for uncovering potential therapeutic targets

(e.g., Plks), and for repurposing existing small molecules in

new physiological contexts (e.g., using the cancer drug BI

2536 to repress innate immune responses). The vast public

compendia of microarray data could serve as starting points

for identification of relevant signaling components in diverse

biological systems, followed by perturbations and signature

measurements. Nevertheless, because the mRNAs correspond-

ing to many pathway components do not change upon pathway

activation, our approach is far from exhaustive. Combination of

our perturbation-based approach with large-scale biochemical

measurements (e.g., posttranslational modifications, protein-

protein interactions) will lead to more comprehensive, integrated

maps of signaling and transcriptional networks.

EXPERIMENTAL PROCEDURES

Cells and Mouse Strains

BMDCs were generated from 6- to 8-week-old female C57BL/6J mice, Crkl

mutant mice (Jackson Laboratories), Plk2�/� mice (Elan Pharmaceuticals),

or Ifnar1�/� mice (gift from K. Fitzgerald). Primary MLFs were from C57BL/

6J mice.

Viruses

SeV strain Cantell and EMCV strain EMC (ATCC), NDV strain Hitchner B1 (gift

from A. Garcia-Sastre), and VSV strain Indiana (U. von Andrian) were used for

infections. Influenza A virus strain A/PR/8/34 and DNS1 were grown in Vero

cells, and virus titers from MLF supernatants were quantified using 293T cells

transfected with a vRNA luciferase reporter plasmid.

Reagents

TLR ligands were from Invivogen (Pam3CSK4, ultra-pure E. coliK12 LPS, ODN

1585 CpG type A, and ODN 1668 CpG type B) and Enzo Life Sciences

(poly(I:C)). Heat-killed Listeria monocytogenes (HKLM) was from Invivogen.

Polo-like kinase inhibitors were from Selleck (BI 2536), Sigma (GW843682X),

and Chembridge (Poloxipan). SP 600125 (Jnk inhibitor) was from Enzo Life

Sciences.
80min. Blots were analyzed using indicated antibodies (leftmost), and fold change

SEM of triplicate MWA blots.

(B) BI 2536 affects protein phosphorylation levels during LPS stimulation. Top: Sc

BMDCs cultured in ‘‘heavy’’ or ‘‘light’’ SILAC medium were pretreated with BI 253

into peptides with trypsin, before phosphoserine, -threonine, and -tyrosine (pS

differential phosphorylation levels (average log2 ratios of two independent experi

and quantified by LC-MS/MS (x axis) at 30 min (top) and 120 min (bottom) p

(Punadjusted < 0.001 for both time points; FDR30min = 0.05; FDR120min = 0.03; left: in

quantified in two independent experiments are depicted.

(C) Eleven Plk-dependent phosphoproteins significantly affect the expression of

signature genes (rows) following knockdown of each of the 11 phosphoproteins (c

hits (as presented in Figure 2) and are shown only for genes where the effect wa

(D) Functional characterization based on similarity of perturbation profiles. Shown

those from Figure 2B including canonical (purple) and candidate (blue) signaling

scriptional regulators. Yellow: positive correlation; purple: negative correlation; b

(E) A Plk-dependent pathway in antiviral sensing. Shown is a diagram of a model o

Plk-dependent proteins described in (C) and (D), only the 5 showing a phenotyp

See also Figure S7 and Tables S6 and S7.
mRNA Isolation, qPCR, and Microarrays

Total or poly(A)+ RNA was extracted and reverse transcribed prior to qPCR

analysis with SYBR Green (Roche) in triplicate with GAPDH for normalization.

For microarray analysis, Affymetrix Mouse Genome 430A 2.0 Array was used.

shRNA Knockdowns

High-titer lentiviruses expressing shRNAs were obtained from The Broad RNAi

Platform and used to infect BMDCs as previously described (Amit et al., 2009).

mRNA Measurements on nCounter

53 104 BMDCswere lysed in RLT buffer (QIAGEN) with 1% b-ME. Ten percent

of the lysate was used for mRNA counting using the nCounter Digital Analyzer

(NanoString) and a previously generated CodeSet of 118 genes (Amit et al.,

2009). To score target genes whose expression is significantly affected by

shRNA perturbations, we used a fold threshold corresponding to a false

discovery rate (FDR) of 2%. Heatmaps and distance matrix analyses were

generated using the Gene-E software (http://www.broadinstitute.org/cancer/

software/GENE-E/).

Detection of Regulated Signaling Genes

We identified differentially regulated signaling components (i.e., kinases,

phosphatases, and signaling adaptors or scaffolds) based on probesets

reproducibly displaying at least 1.7-fold up- or downregulation in at least

one time point, compared to unstimulated controls, using our previously

published microarray dataset (NCBI GEO GSE17721, Amit et al., 2009).

Nanowire-Mediated Drug Delivery and Microscopy

BMDCs were plated on top of etched silicon nanowires (Si NWs) coated with

small molecules. After 24 hr, cells were stimulated and processed for immuno-

fluorescence analysis by confocal microscopy.

VSV Infection Model

Eight-week-old C57BL/6 male mice received 500 mg of BI 2536 (or vehicle)

intravenously and 50 mg into the footpad 3 hr before and 2 hr after infection

with 106 pfu of VSV into the footpad. Mice were sacrificed 6 hr post-infection,

and the draining popliteal lymph nodes were harvested in RNAlater solution

(Ambion) before subsequent RNA extraction and qPCR analysis.

Microwestern Arrays

The MWA method previously described (Ciaccio et al., 2010) was modified to

accommodate a larger number of lysates.

Phosphotyrosine and Global Phospopeptide Analysis

Tyrosine-phosphorylated peptides from BMDC lysates were prepared using

a PhosphoScan Kit (Cell Signaling Technology) and analyzed by data-depen-

dent LC-MS/MS using a Thermo LTQ-Orbitrap. Quantitative analysis of
in fluorescence signals was quantified relative to t = 0 (right). Error bars are the

hematic depiction of experimental workflow. From left to right: LPS-stimulated

6 (1 mM) or DMSO, respectively. Protein lysates were mixed (1:1) and digested

/T/Y) peptide enrichment and LC-MS/MS analysis. Bottom: Shown are the

ments; y axis) of all 5,061 and 5,997 phosphopeptides, respectively, identified

ost-LPS stimulation. Dark gray: phosphopeptides with a significant change

duced; right: repressed). Average ratios from phosphopeptides identified and

TLR signature genes. Shown are significant changes in expression of the TLR

olumns). Cells were stimulated with LPS for 6 hr. Red and blue mark significant

s consistent between two independent experiments.

is a correlation (Pearson) matrix of the perturbation profiles from (C) (gray) and

components as well as core antiviral (green) and inflammatory (orange) tran-

lack: no correlation.

f the Plk-dependent pathway of IFN induction in innate immunity. Out of the 11

e with two independent shRNAs are depicted.
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serine-, threonine-, and tyrosine-phosphorylated peptides was performed

using SCX/IMAC as described (Villén andGygi, 2008) with somemodifications.

Peptide samples were analyzed on a LTQ-Orbitrap Velos (Thermo Fisher

Scientific). To identify and quantify peptides, mass spectra were processed

with Spectrum Mill software package (Agilent Technologies) v4.0b, including

in-house developed features for SILAC quantitation and phosphosite localiza-

tion, and with MaxQuant (v1.0.13.13) (Cox and Mann, 2008) and Mascot

search engine (v2.2.0, Matrix Science).

ACCESSION NUMBERS

Complete microarray datasets are available in the NCBI Gene Expression

Omnibus (accession number GSE28520). Proteomics raw data are in the the

Tranche data repository (https://proteomecommons.org/tranche/, hash:

HTWY5ZeSLM1hyYEyfEiJREkgLXs6BZxCczuixy9XjULsync5HCkXx/8gB7n

ZKpGocwOnt8vOk/Q3cpbPh/ycD/2LT0AAAAAAAAAuEg = =, and pass-

phrase: SpSTB6vceSUKeNqefq59).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, seven

figures, and seven tables and can be found with this article online at doi:10.
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