Publications by Year: 2009

2009
Wolf K, Alexander S, Schacht V, Coussens LM, von Andrian UH, van Rheenen J, Deryugina E, Friedl P. Collagen-based cell migration models in vitro and in vivo. Semin Cell Dev Biol. 2009;20 (8) :931-41.Abstract
Fibrillar collagen is the most abundant extracellular matrix (ECM) constituent which maintains the structure of most interstitial tissues and organs, including skin, gut, and breast. Density and spatial alignments of the three-dimensional (3D) collagen architecture define mechanical tissue properties, i.e. stiffness and porosity, which guide or oppose cell migration and positioning in different contexts, such as morphogenesis, regeneration, immune response, and cancer progression. To reproduce interstitial cell movement in vitro with high in vivo fidelity, 3D collagen lattices are being reconstituted from extracted collagen monomers, resulting in the re-assembly of a fibrillar meshwork of defined porosity and stiffness. With a focus on tumor invasion studies, we here evaluate different in vitro collagen-based cell invasion models, employing either pepsinized or non-pepsinized collagen extracts, and compare their structure to connective tissue in vivo, including mouse dermis and mammary gland, chick chorioallantoic membrane (CAM), and human dermis. Using confocal reflection and two-photon-excited second harmonic generation (SHG) microscopy, we here show that, depending on the collagen source, in vitro models yield homogeneous fibrillar texture with a quite narrow range of pore size variation, whereas all in vivo scaffolds comprise a range from low- to high-density fibrillar networks and heterogeneous pore sizes within the same tissue. Future in-depth comparison of structure and physical properties between 3D ECM-based models in vitro and in vivo are mandatory to better understand the mechanisms and limits of interstitial cell movements in distinct tissue environments.
1-s2.0-s108495210900161x-main.pdf
Roozendaal R, Mempel TR, Pitcher LA, Gonzalez SF, Verschoor A, Mebius RE, von Andrian UH, Carroll MC. Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity. 2009;30 (2) :264-76.Abstract
To track drainage of lymph-borne small and large antigens (Ags) into the peripheral lymph nodes and subsequent encounter by B cells and follicular dendritic cells, we used the approach of multiphoton intravital microscopy. We find a system of conduits that extend into the follicles and mediate delivery of small antigens to cognate B cells and follicular dendritic cells. The follicular conduits provide an efficient and rapid mechanism for delivery of small antigens and chemokines such as CXCL13 to B cells that directly contact the conduits. By contrast, large antigens were bound by subcapsular sinus macrophages and subsequently transferred to follicular B cells as previously reported. In summary, the findings identify a unique pathway for the channeling of small lymph-borne antigens and chemoattractants from the subcapsular sinus directly to the B cell follicles. This pathway could be used for enhancing delivery of vaccines or small molecules for improvement of humoral immunity.
sciencedirect_files_31mar2023_17-37-32.461.zip 1-s2.0-s1074761309000636-main.pdf
Eksteen B, Mora RJ, Haughton EL, Henderson NC, Lee-Turner L, Villablanca EJ, Curbishley SM, Aspinall AI, von Andrian UH, Adams DH. Gut homing receptors on CD8 T cells are retinoic acid dependent and not maintained by liver dendritic or stellate cells. Gastroenterology. 2009;137 (1) :320-9.Abstract
BACKGROUND & AIMS: Lymphocytes primed by intestinal dendritic cells (DC) express the gut-homing receptors CCR9 and alpha4beta7, which recognize CCL25 and mucosal addressin cell-adhesion molecule-1 in the intestine promoting the development of regional immunity. In mice, imprinting of CCR9 and alpha4beta7 is dependent on retinoic acid during T-cell activation. Tissue specificity is lost in primary sclerosing cholangitis (PSC), an extraintestinal manifestation of inflammatory bowel disease, when ectopic expression of mucosal addressin cell-adhesion molecule-1 and CCL25 in the liver promotes recruitment of CCR9+alpha4beta7+ T cells to the liver. We investigated the processes that control enterohepatic T-cell migration and whether the ability to imprint CCR9 and alpha4beta7 is restricted to intestinal DCs or can under some circumstances be acquired by hepatic DCs in diseases such as PSC. METHODS: Human and murine DCs from gut, liver, or portal lymph nodes and hepatic stellate cells were used to activate CD8 T cells. Imprinting of CCR9 and alpha4beta7 and functional migration responses were determined. Crossover activation protocols assessed plasticity of gut homing. RESULTS: Activation by gut DCs imprinted high levels of functional CCR9 and alpha4beta7 on naïve CD8 T cells, whereas hepatic DCs and stellate cells proved inferior. Imprinting was RA dependent and demonstrated plasticity. CONCLUSIONS: Imprinting and plasticity of gut-homing human CD8 T cells requires primary activation or reactivation by gut DCs and is retinoic acid dependent. The inability of liver DCs to imprint gut tropism implies that alpha4beta7+CCR9+ T cell that infiltrate the liver in PSC are primed in the gut.
1-s2.0-s0016508509002868-main.pdf
Schulz C, von Andrian UH, Massberg S. Hematopoietic stem and progenitor cells: their mobilization and homing to bone marrow and peripheral tissue. Immunol Res. 2009;44 (1-3) :160-8.Abstract
Hematopoietic stem and progenitor cells (HSPCs) are a rare population of precursor cells that possess the capacity for self-renewal and multilineage differentiation. In the bone marrow (BM), HSPCs warrant blood cell homeostasis. In addition, they may also replenish tissue-resident myeloid cells and directly participate in innate immune responses once they home to peripheral tissues. In this review, we summarize recent data on the signaling molecules that modulate the mobilization of HSPCs from BM and their migration to peripheral tissues.
s12026-009-8109-6.pdf
Sarraj B, Massberg S, Li Y, Kasorn A, Subramanian K, Loison F, Silberstein LE, von Andrian U, Luo HR. Myeloid-specific deletion of tumor suppressor PTEN augments neutrophil transendothelial migration during inflammation. J Immunol. 2009;182 (11) :7190-200.Abstract
Phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) is a second messenger that is involved in a number of cell activities including cell growth, proliferation, and motility. PIP(3) is produced by PI3K and regulated by PTEN (phosphatase and tensin homolog deleted on chromosome 10) and SHIP lipid phosphatases. Evidence from our experiments shows that enhanced PIP(3) production results in elevated neutrophil recruitment under inflammatory conditions. However, the mechanism of this elevation is not well understood. We used intravital video microscopy to investigate neutrophil recruitment in the cremaster venules of wild-type and PTEN knockout (KO) mice. Neutrophil transmigration was augmented in PTEN KO mice 4 h after TNF-alpha intrascrotal injection. PTEN KO neutrophils also showed significantly enhanced transmigration 2 h after MIP-2 intrascrotal injection, an effect that dramatically decreased when PI3K or Src kinase inhibitor treatments preceded MIP-2 stimulation. Similarly, fMLP superfusion of the cremaster muscle lead to enhanced emigration in PTEN KO mice. The observed elevation in neutrophil emigration was likely caused by increased speed of crawling, crossing the venular wall, and migrating through the muscular tissue in PTEN KO mice because the effect of PTEN depletion on neutrophil rolling or adhesion was minimal. Interestingly, chemoattractant-induced release of gelatinase and elastase was also elevated in PTEN null neutrophils, providing a potential mechanism for the enhanced neutrophil migration in the PTEN KO mice. Collectively, these results demonstrate that PTEN deletion in neutrophils enhances their invasivity and recruitment to inflamed sites more likely by raising the cell physical capability to cross the vascular and tissue barriers.
zim01109007190_01.pdf download_1_01.mov download_2_01.mov download_3.mov download_01.mov
Massberg S, von Andrian UH. Novel trafficking routes for hematopoietic stem and progenitor cells. Ann N Y Acad Sci. 2009;1176 :87-93.Abstract
Bone marrow (BM)-resident hematopoietic stem and progenitor cells (HSPCs) are known to enter the blood and to home back to the BM. However, whether these migratory HSPCs also follow extramedullary traffic routes is unknown. Our group has recently shown that mouse thoracic duct (TD) lymph contains clonogenic HSPCs that possess short- and long-term multilineage reconstitution capacity in primary and secondary transplantation assays. Using BM transplantation, homing experiments, and parabiotic mice, we established that TD HSPCs originate in the BM and traffic constitutively to multiple extramedullary tissues, where they reside for several days until entering draining lymphatics to return to the blood. While these migratory properties of HSPCs resemble those of lymphocytes, circulating HSPCs access different target tissues because, unlike lymphocytes, they do not require secondary lymphoid organs to recirculate. The egress of HSPCs from extramedullary tissues into lymph depends on sphingosine-1-phosphate (S1P) receptors, particularly S1P(1). We have shown that under physiological conditions migratory HSPCs contribute to the continuous restoration of specialized hematopoietic cells that reside in peripheral tissues. Upon exposure to toll-like receptor (TLR) agonists, migratory HSPCs proliferate locally within extramedullary tissues and generate innate immune effector cells. Thus, HSPCs can survey peripheral organs to replenish tissue-resident hematopoietic cells and act as a source of mature leukocytes during host defense against pathogens.
nihms185114.pdf
Mora RJ, von Andrian UH. Role of retinoic acid in the imprinting of gut-homing IgA-secreting cells. Semin Immunol. 2009;21 (1) :28-35.Abstract
Antibody-secreting cells (ASCs) lodging in the mucosa of the small intestine are derived from activated B cells that are thought to arise in gut-associated lymphoid tissues (GALT). Upon leaving the GALT, B cells return to the blood where they must express the gut-homing receptors alpha4beta7 and CCR9 in order to emigrate into the small bowel. Recent evidence indicates that gut-associated dendritic cells (DCs) in GALT induce gut-homing receptors on B cells via a mechanism that depends on the vitamin A metabolite retinoic acid (RA). In addition, although ASC associated with other mucosal tissues secrete IgA in an RA-independent fashion, the presence of high levels of RA in intestine and GALT can promote B cell class switching to IgA and thus, boost the production of IgA in the intestinal mucosa. Here, we discuss the role of RA in the imprinting of gut-homing ASC and the evidence linking RA with the generation of intestinal IgA-ASCs.
1-s2.0-s1044532308000651-main.pdf
Beltman JB, Henrickson SE, von Andrian UH, de Boer RJ, Marée AFM. Towards estimating the true duration of dendritic cell interactions with T cells. J Immunol Methods. 2009;347 (1-2) :54-69.Abstract
To initiate an adaptive immune response, T cells need to interact with dendritic cells (DCs), and the duration of these interactions plays an important role. In vitro and in vivo experiments have generally tried to estimate the required period of opportunity for T cell stimulation rather than the duration of individual T cell-DC interactions. Since the application of multi-photon microscopy (MPM) to living lymphoid tissues, the interactions between immune cells, as well as the duration thereof, can directly be observed in vivo. Indeed, long-lasting interactions between T cells and DCs were shown to be important for the onset of immune responses. However, because MPM imaging is typically restricted to experiments lasting 1 h, and because T cell-DC conjugates frequently move into and out of the imaged volume, it is difficult to estimate the true duration of interactions from MPM contact data. Here, we present a method to properly make such an estimate of (the average of) the distribution of contact durations. We validate the method by applying it to spatially explicit computer simulations where the true distribution of contact duration is known. Finally, we apply our analysis to a large experimental data set of T-DC contacts, and predict an average contact time of about three hours. However, we identify a mismatch between the experimental data and the model predictions, and investigate possible causes of the mismatch, including minor tissue drift during imaging experiments. We discuss in detail how future experiments can be optimized such that MPM contact data will be minimally affected by these factors.
1-s2.0-s0022175909001689-main.pdf sciencedirect_files_05apr2023_16-54-15.661.zip
Schulz C, von Andrian UH, Massberg S. Trafficking of murine hematopoietic stem and progenitor cells in health and vascular disease. Microcirculation. 2009;16 (6) :497-507.Abstract
Hematopoietic stem cells (HSCs) possess the unique capacity for self-renewal and differentiation into various hematopoietic cell lineages. Here we summarize the processes that underlie their mobilization and directed migration from bone marrow into peripheral tissues and back to the bone marrow compartment. We specifically focus on the potential role of hematopoietic stem and progenitor cell (HSPC) migration in vascular diseases and review data from recent studies on mice. A better understanding of the mechanisms that guide HSPCs to vascular tissues will be critical for the development of novel therapeutic strategies to prevent or reverse cardiovascular diseases.