Publications by Year: 2001

2001
Homeister JW, Thall AD, Petryniak B, Malý P, Rogers CE, Smith PL, Kelly RJ, Gersten KM, Askari SW, Cheng G, et al. The alpha(1,3)fucosyltransferases FucT-IV and FucT-VII exert collaborative control over selectin-dependent leukocyte recruitment and lymphocyte homing. Immunity. 2001;15 (1) :115-26.Abstract
E-, P-, and L-selectin counterreceptor activities, leukocyte trafficking, and lymphocyte homing are controlled prominently but incompletely by alpha(1,3)fucosyltransferase FucT-VII-dependent fucosylation. Molecular determinants for FucT-VII-independent leukocyte trafficking are not defined, and evidence for contributions by or requirements for other FucTs in leukocyte recruitment is contradictory and incomplete. We show here that inflammation-dependent leukocyte recruitment retained in FucT-VII deficiency is extinguished in FucT-IV(-/-)/FucT-VII(-/-) mice. Double deficiency yields an extreme leukocytosis characterized by decreased neutrophil turnover and increased neutrophil production. FucT-IV also contributes to HEV-born L-selectin ligands, since lymphocyte homing retained in FucT-VII(-/-) mice is revoked in FucT-IV(-/-)/FucT-VII(-/-) mice. These observations reveal essential FucT-IV-dependent contributions to E-, P-, and L-selectin ligand synthesis and to the control of leukocyte recruitment and lymphocyte homing.
Baekkevold ES, Yamanaka T, Palframan RT, Carlsen HS, Reinholt FP, von Andrian UH, Brandtzaeg P, Haraldsen G. The CCR7 ligand elc (CCL19) is transcytosed in high endothelial venules and mediates T cell recruitment. J Exp Med. 2001;193 (9) :1105-12.Abstract
Lymphocyte homing to secondary lymphoid tissue is defined by a multistep sequence of interactions between lymphocytes and endothelial cells in high endothelial venules (HEVs). After initial selectin-mediated tethering and rolling, firm adhesion of lymphocytes requires rapid upregulation of lymphocyte integrin adhesiveness. This step is mediated in part by the HEV-derived chemokine SLC (secondary lymphoid-tissue chemokine, or CCL21) that binds to the CC chemokine receptor (CCR)7 on lymphocytes. However, the CC chemokine ELC (Epstein-Barr virus-induced molecule 1 ligand chemokine, or CCL19) shares the same receptor, and ELC transcripts have been observed in the T cell areas of lymphoid organs. Here, we show that perivascular ELC is transcytosed to the luminal surfaces of HEVs and enables efficient T cell homing to lymph nodes. In situ hybridization on sections of human tonsil showed no ELC mRNA in HEVs, but immunostaining revealed ELC protein in cytoplasmic vesicles of HEV cells. Furthermore, ELC injected into the footpads of mice entered the draining lymph nodes and was presented by HEVs. Finally, intracutaneous injections of ELC in mice lacking functionally relevant ELC and SLC (plt/plt mice) restored T cell trafficking to draining lymph nodes as efficiently as SLC. We conclude that perivascular ELC is transcytosed to the luminal surfaces of HEVs and participates in CCR7-mediated triggering of lymphocyte arrest.
Weiler H, Lindner V, Kerlin B, Isermann BH, Hendrickson SB, Cooley BC, Meh DA, Mosesson MW, Shworak NW, Post MJ, et al. Characterization of a mouse model for thrombomodulin deficiency. Arterioscler Thromb Vasc Biol. 2001;21 (9) :1531-7.Abstract
Mutations in the gene encoding thrombomodulin (TM), a thrombin regulator, are suspected risk factors for venous and arterial thrombotic disease. We have previously described the generation of TM(Pro/Pro) mice carrying a TM gene mutation that disrupts the TM-dependent activation of protein C. Here, it is shown that inbred C57BL/6J TM(Pro/Pro) mice exhibit a hypercoagulable state and an increased susceptibility to thrombosis and sepsis. Platelet thrombus growth after FeCl(3)-induced acute endothelial injury was accelerated in mutant mice. Vascular stasis after permanent ligation of the carotid artery precipitated thrombosis in mutant but not in normal mice. Mutant mice showed increased mortality after exposure to high doses of endotoxin and demonstrated altered cytokine production in response to low-dose endotoxin. The severity of the hypercoagulable state and chronic microvascular thrombosis caused by the TM(Pro) mutation is profoundly influenced by mouse strain-specific genetic differences between C57BL/6 and 129SvPas mice. These data demonstrate that in mice, TM is a physiologically relevant regulator of platelet- and coagulation-driven large-vessel thrombosis and modifies the response to endotoxin-induced inflammation. The phenotypic penetrance of the TM(Pro) mutation is determined by as-yet-uncharacterized genetic modifiers of thrombosis other than TM.
Manjunath N, Shankar P, Wan J, Weninger W, Crowley MA, Hieshima K, Springer TA, Fan X, Shen H, Lieberman J, et al. Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. J Clin Invest. 2001;108 (6) :871-8.Abstract
The lineage relationship between short-lived effector T cells and long-lived memory cells is not fully understood. We have described T-GFP mice previously, in which naive and early activated T cells express GFP uniformly, whereas cells that have differentiated into effector cytotoxic T cells selectively lose GFP expression. Here we studied antigen-specific CD8 T cell differentiation using T-GFP mice crossed to the TCR transgenic (Tg) mice P14 (specific for the lymphocytic choriomeningitis virus glycoprotein peptide, gp33-41). After activation with antigenic peptide, P14XT-GFP CD8(+) T cells cultured in high-dose IL-2 developed into cells with effector phenotype and function: they were blastoid, lost GFP expression, expressed high levels of activation and effector markers, and were capable of immediate cytotoxic function. In contrast, cells cultured in IL-15 or low-dose IL-2 never developed into full-fledged effector cells. Rather, they resembled memory cells: they were smaller, were GFP(+), did not express effector markers, and were incapable of immediate cytotoxicity. However, they mediated rapid-recall responses in vitro. After adoptive transfer, they survived in vivo for at least 10 weeks and mounted a secondary immune response after antigen rechallenge that was as potent as endogenously generated memory cells. In addition to providing a simple means to generate memory cells in virtually unlimited numbers, our results suggest that effector differentiation is not a prerequisite for memory cell generation.
Palframan RT, Jung S, Cheng G, Weninger W, Luo Y, Dorf M, Littman DR, Rollins BJ, Zweerink H, Rot A, et al. Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J Exp Med. 2001;194 (9) :1361-73.Abstract
Interstitial fluid is constantly drained into lymph nodes (LNs) via afferent lymph vessels. This conduit enables monocyte-derived macrophages and dendritic cells to access LNs from peripheral tissues. We show that during inflammation in the skin, a second recruitment pathway is evoked that recruits large numbers of blood-borne monocytes to LNs via high endothelial venules (HEVs). Inhibition of monocyte chemoattractant protein (MCP)-1 blocked this inflammation-induced monocyte homing to LNs. MCP-1 mRNA in inflamed skin was over 100-fold upregulated and paralleled MCP-1 protein levels, whereas in draining LNs MCP-1 mRNA induction was much weaker and occurred only after a pronounced rise in MCP-1 protein. Thus, MCP-1 in draining LNs was primarily derived from inflamed skin. In MCP-1(-/-) mice, intracutaneously injected MCP-1 accumulated rapidly in the draining LNs where it enhanced monocyte recruitment. Intravital microscopy showed that skin-derived MCP-1 was transported via the lymph to the luminal surface of HEVs where it triggered integrin-dependent arrest of rolling monocytes. These findings demonstrate that inflamed peripheral tissues project their local chemokine profile to HEVs in draining LNs and thereby exert "remote control" over the composition of leukocyte populations that home to these organs from the blood.
Fors BP, Goodarzi K, von Andrian UH. L-selectin shedding is independent of its subsurface structures and topographic distribution. J Immunol. 2001;167 (7) :3642-51.Abstract
L-selectin (CD62L), a lectin-like adhesion molecule, mediates lymphocyte homing and leukocyte accumulation at sites of inflammation. Its transmembrane (TM) and intracellular (IC) domains confer clustering of L-selectin on microvilli of resting leukocytes, which is important for L-selectin function. Following activation of protein kinase C (PKC) or calmodulin inhibition, the wild-type (WT) protein is rapidly cleaved in its membrane-proximal ectodomain. To examine whether L-selectin topography or TM/IC domains are involved in this shedding process, we used stable transfectants expressing WT L-selectin (on microvilli) or chimeric molecules consisting of the L-selectin ectodomain linked to the TM/IC domains of CD44 (excluded from microvilli) or CD31 (randomly distributed). PKC activation by PMA altered the cells' surface morphology, but did not induce a redistribution of L-selectin ectodomains. All cell lines shed ectodomains upon PMA activation in a dose-dependent fashion and with similar kinetics. Calmodulin inhibition by trifluoperazine induced shedding in both WT and chimera transfectants. At high trifluoperazine concentrations, shedding of WT L-selectin was significantly more pronounced than that of chimeric molecules. Regardless of the activating stimulus, shedding was blocked by a hydroxamate-based metalloprotease inhibitor, suggesting that ectodomain down-regulation occurred through proteolytic cleavage by identical protease(s). These results show that the recognition site(s) for PKC-induced L-selectin shedding is exclusively contained within the ectodomain; the nature of subsurface structures and surface topography are irrelevant. Shedding induced by calmodulin inhibition has two components: one requires the L-selectin TM/IC domain, and the other is independent of it.
Weninger W, Crowley MA, Manjunath N, von Andrian UH. Migratory properties of naive, effector, and memory CD8(+) T cells. J Exp Med. 2001;194 (7) :953-66.Abstract
It has been proposed that two different antigen-experienced T cell subsets may be distinguishable by their preferential ability to home to lymphoid organs (central memory cells) or nonlymphoid tissues (effector memory/effector cells). We have shown recently that murine antigen-primed CD8(+) T cells cultured in interleukin (IL)-15 (CD8(IL-15)) resemble central memory cells in phenotype and function. In contrast, primed CD8(+) T cells cultured in IL-2 (CD8(IL-2)) become cytotoxic effector cells. Here, the migratory behavior of these two subsets was investigated. Naive, CD8(IL-15) cells and, to a lesser degree, CD8(IL-2) cells localized to T cell areas in the spleen, but only naive and CD8(IL-15) cells homed to lymph nodes (LNs) and Peyer's patches. Intravital microscopy of peripheral LNs revealed that CD8(IL-15) cells, but not CD8(IL-2) cells, rolled and arrested in high endothelial venules (HEVs). Migration of CD8(IL-15) cells to LNs depended on L-selectin and required chemokines that bind CC chemokine receptor (CCR)7. Both antigen-experienced populations, but not naive T cells, responded to inflammatory chemokines and accumulated at sites of inflammation. However, CD8(IL-2) cells were 12 times more efficient in migrating to inflamed peritoneum than CD8(IL-15) cells. Furthermore, CD8(IL-15) cells proliferated rapidly upon reencounter with antigen at sites of inflammation. Thus, central memory-like CD8(IL-15) cells home avidly to lymphoid organs and moderately to sites of inflammation, where they mediate rapid recall responses, whereas CD8(IL-2) effector T cells accumulate in inflamed tissues, but are excluded from most lymphoid organs.
von Andrian UH. PKC-beta(I): the whole ignition system or just a sparkplug for T cell migration?. Nat Immunol. 2001;2 (6) :477-8.
Shimaoka M, Lu C, Palframan RT, von Andrian UH, McCormack A, Takagi J, Springer TA. Reversibly locking a protein fold in an active conformation with a disulfide bond: integrin alphaL I domains with high affinity and antagonist activity in vivo. Proc Natl Acad Sci U S A. 2001;98 (11) :6009-14.Abstract
The integrin alphaLbeta2 has three different domains in its headpiece that have been suggested to either bind ligand or to regulate ligand binding. One of these, the inserted or I domain, has a fold similar to that of small G proteins. The I domain of the alphaM and alpha2 subunits has been crystallized in both open and closed conformations; however, the alphaL I domain has been crystallized in only the closed conformation. We hypothesized that the alphaL domain also would have an open conformation, and that this would be the ligand binding conformation. Therefore, we introduced pairs of cysteine residues to form disulfides that would lock the alphaL I domain in either the open or closed conformation. Locking the I domain open resulted in a 9,000-fold increase in affinity to intercellular adhesion molecule-1 (ICAM-1), which was reversed by disulfide reduction. By contrast, the affinity of the locked closed conformer was similar to wild type. Binding completely depended on Mg(2+). Orders of affinity were ICAM-1 > ICAM-2 > ICAM-3. The k(on), k(off), and K(D) values for the locked open I domain were within 1.5-fold of values previously determined for the alphaLbeta2 complex, showing that the I domain is sufficient for full affinity binding to ICAM-1. The locked open I domain antagonized alphaLbeta2-dependent adhesion in vitro, lymphocyte homing in vivo, and firm adhesion but not rolling on high endothelial venules. The ability to reversibly lock a protein fold in an active conformation with dramatically increased affinity opens vistas in therapeutics and proteomics.
Mackay CR, von Andrian UH. Immunology. Memory T cells--local heroes in the struggle for immunity. Science. 2001;291 (5512) :2323-4.