Endothelial Heparan Sulfate Controls Chemokine Presentation in Recruitment of Lymphocytes and Dendritic Cells to Lymph Nodes

Yuki Ito,1 Hiroto Kawashima,1,8 Yu Yamaguchi,1,2 John B. Lowe,4,6 Ulrich H. von Andrian,3 and Minoru Fukuda1,*

1Glycobiology Unit
2Sanford Children’s Health Research Center
Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
3Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
4Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
5Present address: Tohoku University School of Medicine, Sendai, 980-8574, Japan
6Present address: Genentech, South San Francisco, CA 94080, USA
7Present address: Hirosaki University School of Medicine, Hirosaki, 036-8562, Japan
8Present address: School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
*Correspondence: minoru@burnham.org
DOI 10.1016/j.immuni.2010.10.018

SUMMARY

Heparan sulfate can bind several adhesion molecules involved in lymphocyte trafficking. However, the in vivo function of endothelial heparan sulfate in lymphocyte homing and stimulation of the immune response has not been elucidated. Here, we generated mutant mice deficient in the enzyme Ext1, which is required for heparan sulfate synthesis, in a Tek-dependent and inducible manner. Chemokine presentation was diminished in the mutant mice, causing the lack of appropriate integrin-mediated adhesion, and resulted in a marked decrease in lymphocyte sticking to high endothelial venules and in recruitment of resident dendritic cells through lymphatic vessels to the lymph nodes. As a consequence, mutant mice displayed a severe impairment in lymphocyte homing and a compromised contact hypersensitivity response. By contrast, lymphocyte rolling was increased because of loss of electrostatic repulsion by heparan sulfate. These results demonstrate critical roles of endothelial heparan sulfate in immune surveillance and immune response generation.

INTRODUCTION

Immune surveillance requires continuous recruitment of both lymphocytes from blood circulation and antigen presenting cells from peripheral tissues to lymph nodes, where they can interact in order to initiate an adaptive immune response (Butcher and Picker, 1996; Marchesi and Gowans, 1964). Dendritic cells and other antigen presenting cells enter lymph nodes through afferent lymphoid vessels, whereas lymphocytes enter lymph nodes through a specialized vasculature of high endothelial venules (HEVs). Homing of lymphocytes to lymph nodes involves multiple stepwise interactions between lymphocytes and HEV cells, including L-selectin-mediated cell rolling and tethering, chemokine-mediated integrin activation, and integrin-mediated cell sticking or firm adhesion, which leads to transmigration across blood vessels (McEver and Zhu, 2010; Rosen, 2004; Springer, 1994; von Andrian and Mempel, 2003).

Molecular and cell-based studies indicate that heparan sulfate binds in vitro to several major molecules including L-selectin, chemokines, and integrins involved in lymphocyte homing (Parish, 2006). In HEV, we and others have demonstrated that a specialized carbohydrate termed 6-sulfated sialyl Lewis X (sialic acid-2→3Gal[1→4][Fuc-1→3(sulfo-6)GlcNAc, 6-sulfosLeX]) is the functional ligands for L-selectin by analyses of mutant mice deficient in fucosyltransferase (FucT) IV and VII (Homeister et al., 2001), core 2 N-acetylgalcosaminyltransferase (GnT)-1 (Ellies et al., 1998; Yeh et al., 2001), N-acetylgalcosamine-6-O-sulfotransferases (GlcNAc6ST) -1 and -2 (Kawashima et al., 2005; Uchimura et al., 2005), and core 1 β3GnT and core 2 GnT-1 (Mitoma et al., 2007). However, sulfation of heparan sulfate in lung endothelial cells was recently reported to modulate L-selectin binding and L-selectin-mediated cell rolling in lung microvessels (Wang et al., 2005). Thus, the in vivo contribution of endothelial heparan sulfate in L-selectin-mediated lymphocyte rolling during lymphocyte homing remains obscure.

Most chemokines, including the secondary lymphoid chemokine CCL21 (also called SLC), which is indispensable for lymphocyte homing, bind in vitro to heparan sulfate or its highly sulfated analog heparin (Lortat-Jacob et al., 2002). Heparan sulfate-bound chemokines are recognized by chemokine receptors such as CCR6 and CCR7, thereby activating integrins leading to lymphocyte extravasation (von Andrian and Mempel, 2003). Multiple lines of evidence indicate that heparan sulfate functions in transcytosis, presentation, and gradient formation of chemokines to promote lymphocyte migration (Lander et al., 2002; Middleton et al., 1997). Studies utilizing in vitro flow chamber models have shown that under shear flow, the cell-bound chemokine (CCL21) but not soluble CCL19 activate integrins on rolling lymphocytes to allow interaction with its ligand, intercellular...
adhesion molecule 1 (ICAM-1) (Shamri et al., 2005). However, the physiological role of HEV heparan sulfate in the chemokine-mediated lymphocyte homing has not been determined.

Recruitment of antigen-bearing dendritic cells from peripheral tissues to lymph nodes is crucial for adaptive immune response generation. The migration of dendritic cells is directed by both the cell-bound chemokine CCL21 and the soluble chemokine CCL19, which form a gradient in the intestinal tissue to guide the tissue resident dendritic cells to move toward draining lymph nodes via lymphatic vessels (Bajenoff et al., 2006; Schumann et al., 2010). It is not known whether heparan sulfate, in particular lymphatic endothelial heparan sulfate, plays a role in this process.

To examine the pathophysiological functions of endothelial heparan sulfate in the recruitment of lymphocytes and dendritic cells to lymph nodes, we first inactivated the exostoses-1 (Ext1) gene, which is required for the formation of heparan sulfate chains, in a Tek-dependent manner, but homozygous mice died before birth. To bypass the embryonic lethality, we generated transgenic mice harboring a tetracycline-controlled transactivator (rtTA) gene under Tek promoter (Tek-rtTA) and inactivated Ext1 in a Tek-dependent and inducible manner. With this mouse model, we demonstrate in this study that heparan sulfate is critically required for chemokine immobilization and functional presentation on the cell surface of both HEV cells and lymphatic endothelial cells. Removal of endothelial heparan sulfate diminishes lymphocyte sticking during lymphocyte homing and decreases recruitment of dendritic cells via lymphatics to lymph node, which leads to a compromised response in contact hypersensitivity. We also found that endothelial heparan sulfate antagonizes L-selectin-counterreceptor interactions in HEV, thus attenuating lymphocyte rolling. These results establish crucial but multifaceted functions of endothelial heparan sulfate in lymphocyte homing and dendritic cell recruitment, and thereby immune response generation.

RESULTS

Enzymatic Removal of Endothelial Heparan Sulfate Diminishes Lymphocyte Homing

To assess the in vivo function of HEV heparan sulfate in lymphocyte homing, we infused a mixture of heparitinase and heparinase (hereafter, “HSases” is used) to wild-type (WT) mice through the tail veins to enzymatically remove the endothelial heparan sulfate in HEV. Lymphocyte homing to both peripheral lymph nodes (PLNs) and mesenteric lymph nodes (MLNs) of the HSase-infused mice was significantly decreased compared to those of PBS-infused mice (Figure 1A). Less than 20% of homing activity to PLNs was detected in HSase-infused mice. No decrease, but rather a slight increase, in homing was found for those infused with chondroitinase ABC (CSase ABC) (Figure 1A), which degrades chondroitin sulfate and dermatan sulfate in addition to hyaluronic acid. In these assays, either HSases or CSase ABC specifically degraded their respective glycosaminoglycans on both the luminal surface and subcellular matrix of lymph node HEV endothelial cells (Figure 1B). By contrast, treatment of lymphocytes with HSases had no effect at all in the homing to lymph nodes (Figure 1C). These results demonstrated a specific and critical role of heparan sulfate on HEV in the homing of lymphocytes to lymph nodes.

Antigen MECA-79+ lymph node HEV cells express two major membrane heparan sulfate proteoglycans (PGs), syndecan-4 and glypicanc-1, and a minor proteoglycan, syndecan-2 (Figure 1D). Immunoblotting confirmed the predominant expression of syndecan-4 and glypicanc-1 in lymph node HEV (Figure 1E). However, we detected no alteration in the lymph node cellularity and lymphocyte homing in the syndecan-4-deficient mice (Ishiguro et al., 2000) compared to WT mice (data not shown). These results indicate that multiple heparan sulfate PGs in lymph node HEV cells collectively contribute to regulation of lymphocyte homing.

Conditional Inactivation of Ext1 in an Inducible Manner

To determine the physiological function of endothelial heparan sulfate in immune surveillance and chronic inflammation, we initially crossedbred Tek-Cre mice (Koni et al., 2001) with Ext1flox/flox mice (Inatani et al., 2003) to delete Ext1 in endothelial cells. No such conditional homozygous mice were born, indicating an embryonic lethality of the conditionally ablated mice (data not shown). To bypass embryonic lethality, we used a Tet-on system-based inducible targeting approach to inactivate Ext1 in endothelial cells and leukocytes only at adult stage by crossbreeding of Tek-rtTA mice, Tet-Cre mice (Belteki et al., 2005), and Ext1flox/flox mice. To generate Tek-rtTA transgenic mice, we made a transgenic vector containing the mouse Tek promoter (Schlaeger et al., 1997), rtTA with a poly A sequence, and the full-length mouse Tek enhancer (Figures S1A and S1B available online). Among nine transgenic mouse clones with Tek-rtTA gene (Figure S1C), two independent transgenic clones (#8 and #29) exhibited identical specificity and effectiveness in β-galactosidase recombination in Rosa26r reporter mice (Figure S2), and the #29 mouse line was used hereafter. Whole-mount staining for β-galactosidase by X-gal solution of the intercrosses of Tek-rtTA, Tet-Cre and Rosa2lox/lox (Tek-rtTA::Tet-Cre::Rosa2lox/lox) with or without 2 weeks of doxycycline (Dox) treatment through drinking water indicated that the vasculature, lymphocytes, and hematopoietic cells of the heart, lung, aorta, and lymph nodes were positive, which is consistent with the reported expression profile of the Tek gene (Koni et al., 2001). By contrast, those of Tek-rtTA::Tet-Cre::Rosa2lox/lox were negative (Figure S2). Notably, some vasculatures in the lung and lymphocytes in the lymph nodes of the Tek-rtTA::Tet-Cre::Rosa2lox/lox without Dox treatment are weak positive for X-gal, indicating a baseline, Dox-independent expression in the system.

To inactivate heparan sulfate synthesis, Tek-rtTA::Tet-Cre::Ext1flox/lox mice were further crossbred with Ext1flox/lox mice to generate Tek-rtTA::Tet-Cre::Ext1flox/lox mice (Figure S1A). These mice were born and thrived normally and showed no overall difference from their control Tek-rtTA::Tet-Cre::Ext1flox/lox and Tek-rtTA::Tet-Cre::Ext1flox/lox littermates. Dox administration of 1-month-old mice brought a gradual loss of heparan sulfate in lymph node HEV of Tek-rtTA::Tet-Cre::Ext1flox/lox (mutant mice), whereas no change was detected for the similar Dox-treated control mice (Figure S3A).

After a 3 week treatment with Dox, heparan sulfate expression was barely detectable in the HEV of mutant mice, whereas CD31+ vasculatures and core protein of the basement membrane heparan sulfate PG, perlecain, were both distributed
normally in the lymph nodes (Figure 2A; Figure S3A). Polymerase chain reaction (PCR) analyses of freshly isolated MECA-79+ lymph node HEV cells from mutant mice showed minimal levels of Ext1 mRNA and robust signals for inactivated Ext1 (Figure 2B).

As expected from the X-gal staining, a low level of genomic Ext1 deletion was seen in cells of the mice that received no Dox (Figure 2B). Immunoblotting analysis of isolated CD31+ lung panendothelial cells showed a reduced molecular size of syndecan-4 in mutant mice (Figure 2C). The size was not altered by further treatment with HSases, but treatment with both HSases and CSase ABC resulted in further reduction of syndecan-4 size to about 35 kda (Figure 2C). Enzyme-linked immunosorbent assay (ELISA) showed that approximately 90% of heparan sulfate on syndecan-4 in lung panendothelial cells was lost in the mutant mice compared to control mice (Figure 2D). In addition, consistent with the X-gal staining, a similar deletion profile of Ext1 gene in splenic lymphocytes of mutant mice was also detected (Figures S3B and S3C).

Overall, these results indicate that we have generated an in vivo recombination system, which specifically and efficiently deletes virtually all heparan sulfate in endothelial cells including lymph node HEV in adult mice. To our knowledge, this is the first live animal model that lose endothelial heparan sulfate.
Diminished Lymphocyte Homing in Ext1 Mutant Mice because of Decreased Chemokine Presentation

After 3 weeks of Dox treatment, mutant mice showed no gross abnormalities, but cell numbers of PLN, MLN, and PP (Peyer's patches) were all about 50% lower than those of control mice (Figure 3A). By contrast, the numbers of lymphocytes and granulocytes in the peripheral blood are increased (Figure 3B), similar to that observed in FucT-IV−/−;FucT-VII−/− mice (Homeister et al., 2001). Lymph node cellularity was further reduced after a 2 month treatment with Dox and the gross sizes of PLNs were smaller than those of control mice (Figure 3C, insert). This difference in the cell number was not due to an altered cell proliferation based on in vitro assessment by using mitogen concanavalin A (Figure 3D), a finding consistent with a previous report that T or B cell-specific deletion of heparan sulfate does not alter T and B cell proliferation (Garner et al., 2008). Both T cells and B cells appeared similarly affected (Figure 3E). In line with the reduced cellularity, homing of lymphocytes to PLN, MLN, and PP was all significantly decreased (Figure 3F). The remaining one-third of homing activity in PLNs of mutant mice was further reduced to background amounts by a tail vein infusion of HSases (Figure 3F, left), whereas a slightly increased homing to spleen was detected in mutant mice (Figure 3F, right). On the other hand, lymphocytes isolated from control and mutant mice had the same capability of homing to wild-type lymph nodes (Figure 3G), indicating that Ext1 gene abrogation in lymphocytes has no effect on their homing activity. The spatial distribution of T and B cells in the lymph nodes in the mutant mice was also normal (Figure 3H). These results together demonstrate that endothelial heparan sulfate but not lymphocyte heparan sulfate plays a decisive role in lymphocyte homing.

Intravital microscopic analysis showed a reduced sticking of T lymphocytes in typical lymph node HEV order III venules (M’Rini et al., 2003) of the mutant mice when compared to that of control mice (Figure 4A). This situation was similar to pertussis toxin-treated mice (Warnock et al., 1998). Under the same
conditions, only a slight increase in blood flow velocity was observed (V_{blood} in Table S1). The diminished lymphocyte sticking in order III venules was associated with the decrease of lymphocyte rolling velocity (Figure 4B, right), indicating that lymphocytes slowly kept rolling rather than arrest on endothelium in the absence of heparan sulfate. Loss of HEV heparan sulfate was accompanied by a loss of endothelial presentation of endogenous CCL21 and CCL2 (Figure 4C and Figure S4), but no alteration in the expressions of MEC-79 antigen, L-selectin ligands, or ICAM-1 (Figure 4C) was observed. The little remaining CCL21 in the HEV of mutant mice could bind to the residual heparan sulfate and/or other molecules such as collagen IV (Yang et al., 2010).
Heparan sulfate and CCL21 in the fibroblastic reticular network was not, however, affected in the mutant mice (Figure 4C and Figure S4B), suggesting a role of heparan sulfate synthesized by stromal cells in presenting CCL21 in the fibroblastic reticular network. CCL21 is a critical chemokine for lymphocyte homing (Nakano et al., 1998). CCR7 is the cognate receptor on lymphocytes for CCL21 (Fo¨ rster et al., 1999). We found that homing of lymphocytes in Ccr7+/- mice to Ext1+/- mouse lymph nodes was significantly lower than homing of lymphocytes in WT mice to the same Ext1+/- mouse lymph nodes or Ccr7+/- lymphocytes in WT mice (Figure 4D), indicating that HEV heparan sulfate is genetically connected to the CCL21-CCR7 signaling for lymphocyte homing. These results demonstrate that endothelial heparan sulfate plays an essential role in immobilization and presentation of lymphocytes to HEV.

Figure 4. Diminished Sticking and Decreased Rolling Velocity of Lymphocytes in Ext1 Mutant Mice
(A) Sticking fraction of T cells in orders II and III lymph node venules analyzed by intravital microscopy. Combined results of 6–7 venules for order II and 13 venules for order III from 8 mice of each group are shown.
(B) Cumulative rolling velocity of T cells in orders II and III lymph node venules of control and mutant mice (n = 8). The percentage of rolling cells is expressed as function of Vroll (see Experimental Procedures).
(C) Immunostaining of MECA-79 antigen (MECA-79), L-selectin ligands (L-sel-IgM), intercellular adhesion molecule-1 (ICAM-1), chemokines CCL21 and CCL2, and laminin (LN) in lymph node frozen sections. Scale bars represent 50 μm.
(D) Homing of labeled lymphocytes isolated from WT or Ccr7+/- mice to the lymph nodes of WT mice or Ext1+/- mice (n = 4).
(E) Rolling fraction of T cells in orders II and III lymph node venules analyzed by intravital microscopy. Combined results of 6–7 venules for order II and 13 venules for order III from 8 mice of each group are shown.

Mean values are shown as horizontal bars in (A) and (E). *p < 0.05, versus control mice (unpaired t test).
Heparan Sulfate Controls Leukocyte Trafficking

Increased Lymphocyte Rolling in HEV of Mutant Mice
Apart from the reduced lymphocyte sticking in mutant mice, we noticed reduced rolling velocity in MECA-79⁺ order III venules (Figure 4B) along with an increased rolling of T cells in order II venules (Figure 4E), suggesting that endothelial heparan sulfate negatively regulates L-selectin-mediated cell rolling. Order II venules are downstream from order III venules. It is thus possible that lymphocytes, which begin to roll in higher-order venules (III, IV, and V) yet fail to stick because of lack of heparan sulfate, may simply continue rolling through downstream orders, resulting in higher rolling fraction in order II venules without decrease in rolling velocity (Figure 4B). Immunofluorescence staining showed indistinguishable expression of L-selectin ligands in HEV of control and mutant mice (Figure 4C). Analysis of splenic T and B cells also showed a normal expression of L-selectin at both mRNA and protein levels in mutant mice (Figures S3B and S3C). These results indicate that genetic removal of endothelial heparan sulfate had no effect in the expression of L-selectin in lymphocytes and of L-selectin ligands in HEV.

To delineate the effects of cell surface heparan sulfate in L-selectin-mediated lymphocyte rolling, we measured the rolling of 38C13 B cells (van Zante et al., 2003) on genetically engineered Chinese hamster ovary (CHO) cells, which mimic the glycan profile of HEV cells by stably expressing α- and β-glycans sLeX (CHO:CD34:FucTVII:C1:C2:GlcNAc6ST-2) or on CHO cells expressing only β-glycans sLeX (CHO:CD34:FucT-VII) without enzyme treatment (-) or treated with chondroitinase ABC (CSase ABC), heparitinase, and heparinase (HSases) (+).

Contact Hypersensitivity Is Altered in Mutant Mice
The above findings suggest that lymphocyte recruitment in inflamed tissues may also depend on endothelial heparan sulfate. To test this hypothesis, we evaluated a contact hypersensitivity response, which is primarily mediated by T cells (Staite et al., 1996). Mutant mice showed significant reductions in ear swelling and in mononuclear cell infiltration after sensitization and challenge with the hapten DNFB (2,4-dinitrofluorobenzene; Figures 6A and 6B). The recruitment of CD3⁺ T cells was substantially reduced in inflamed ears of the mutant mice (Figure 6C, left, and Figure 6S6A). Analysis of draining lymph nodes after sensitization and challenge indicated that both total cell number and homing activity in the draining lymph nodes of mutant mice were lower than those of control mice (Figure 6D).

Data are representative of two independent experiments (mean ± SE).

Supporting Figures

Figure 5. Rolling of 38C13 Cells on CHO Cells Expressing 6-Sulfo sLeX or sLeX on N-Glycans and O-Glycans
(A) Rolling of 38C13 cells on CHO cells expressing 6-sulfo sLeX on both N- and O-glycans (CHO:CD34:FucT-VII:C1:C2:GlcNAc6ST-2) or on CHO cells expressing only N-glycans sLeX (CHO:CD34:FucT-VII) without enzyme treatment (-) or treated with chondroitinase ABC (CSase ABC), heparitinase, and heparinase (HSases) (+).
(B) Cell rolling on CHO cells expressing 6-sulfo sLeX on both N- and O-glycans treated with individual enzyme described in (A).
(C) Rolling velocity on PBS- or HSase-treated CHO cells expressing 6-sulfo sLeX as shown in (B).
of antigen-specific lymphocytes to the draining lymph nodes and reduced neutrophil recruitment to the inflamed ear collectively contributed to a reduced contact hypersensitivity response in mutant mice. By contrast, GlcNAc6ST-1 and -2 double-deficient mice exhibited reduced recruitment of mononuclear cells but not of neutrophils (Figure S6C; Kawashima et al., 2005).

Figure 6. Impaired Contact Hypersensitivity in Ext1 Mutant Mice
(A) Ear swelling 24 hr after challenge with DNFB or vehicle alone in control and mutant mice (n = 4–6).
(B) Hematoxylin and eosin staining of ear sections challenged with DNFB. Arrowheads are infiltrated mononuclear cells; arrows are infiltrated neutrophils; dashed areas are epidermal areas with neutrophil clustering. Scale bar represents 250 μm.
(C) Quantitation of infiltrated T cells in inflamed ears (left) and areas of neutrophil clusters (right) (n = 3–5). Numbers of CD3+ cells in the area of 300 μm long ear were counted, and the epidermis area with clustered neutrophils of the whole ear were measured.
(D) Cell number of sensitized draining inguinal lymph nodes (left) and lymphocyte homing to the draining inguinal lymph nodes (right) (n = 3–5).
(E) CXCL2 expression in CD31+ cells of DNFB-inflamed abdominal skins. Arrowheads indicate microvessels. Scale bar represents 25 μm.
(F) Cell proliferation isolated from sensitized inguinal lymph nodes in response to DNBS (200 μg/ml) (n = 3).
*p < 0.05; **p < 0.01, versus control mice. Data are representative of two independent experiments (mean ± SE).
Impaired Migration of Dendritic Cells to Lymph Nodes in Ext1 Mutant Mice

To further study the mechanism of reduced contact hypersensitivity in mutant mice as shown above, we examined the migration of tissue-resident dendritic cells to the draining lymph node, an earlier step initiating the adaptive immune response. By using a skin painting model, we found that the recruitment of CD11c+ and FITC+ double-positive cells to the draining lymph nodes was significantly lower (one third reduction) in the mutant mice than in the control mice (Figure 7A, left). Accordingly, the total cell number of draining lymph nodes was fewer in the mutant mice (Figure 7A, right). Endogenous dendritic cells in the inflamed skin of the mutant mice were not reduced as much as those in the wild-type mice (Figure 7B, left). However, the recruited FITC+ cells appear to equally enter into the T cell zone of the draining lymph nodes of both mouse lines (Figure 7C), indicating that intranodal migration of recruited dendritic cells was normal in the mutant mice. We also assayed homing of exogenous bone marrow-derived dendritic cells to the draining lymph nodes under inflammatory condition stimulated by DNFB and detected an almost identical reduction of dendritic cell homing to the draining lymph nodes as seen after FITC-skin painting (Figure 7D). These results indicate that homing of not only lymphocytes via blood but also dendritic cells via lymphatics was impaired in the mutant mice.

Tek gene is known to be expressed in the lymphatic endothelial cells (Shimoda, 2009). In order to measure heparan sulfate of the lymphatic endothelial cells, we cultured dermal cells in vitro and isolated the podoplanin+ lymphatic endothelial cells (Kriebel et al., 2001) from the skin of control and mutant mice. Cells from both mouse lines grew similarly in vitro. Flow cytometric analysis showed a substantially lower expression of heparan sulfate assessed by antibody 10E4 in the lymphatic endothelial cells from the mutant mice compared with those of the control mice (Figure 7A). Cell-based ELISA demonstrated more than an 80% reduction in heparan sulfate in lymphatic endothelial cells from the mutant mice (Figure 7B). Consequently, the binding capacity of the mutant cells toward the exogenous chemokines CCL21 and CCL19 was much lower than those of control mice (Figure 7F). Immunofluorescence analysis confirmed the diminished presentation of CCL21 in lymphatic vessels with a normal structural distribution in the DNFB-stimulated mutant mouse skin (Figures 7B and 7C).
These results collectively indicate that decreased expression of heparan sulfate in lymphatic endothelial cells reduces homing of tissue-resident dendritic cells to draining lymph nodes in inflammatory conditions because of insufficient immobilization of chemokines required for dendritic cell recruitment to lymphatic vessels.

DISCUSSION

Recruitment of lymphocytes from blood circulation and dendritic cells from peripheral tissues to the lymph nodes is essential to maintain immune surveillance and generation of the adaptive immune response during inflammation. Here we have provided the in vivo evidence for the critical functions of endothelial heparan sulfate in the homing of both lymphocytes and dendritic cells to the lymph nodes under pathophysiological conditions by analyzing an inducible and conditionally genetically targeted mouse model.

Lymphocyte homing is tightly controlled by three overlapping stepwise interactions between lymphocytes and HEV cells. The initial rolling step is mediated by L-selectin on lymphocytes (Arbónes et al., 1994), which binds to 6-sulfo sLeX and sLeX on HEV cells (Rosen, 2004). Although heparan sulfate was shown to support L-selectin-mediated rolling of neutrophils in lung microcapillaries in acute inflammation (Wang et al., 2005), our current studies on genetic removal of HEV heparan sulfate did not decrease but increased the lymphocyte rolling in vivo and in vitro, demonstrating that endothelial heparan sulfate is not a L-selectin ligand in HEV. This conclusion is in line with the previous reports that sLeX or its 6-sulfated analogs are entirely responsible for the L-selectin-mediated lymphocyte homing (Homeister et al., 2001; Kawashima et al., 2005; Mitoma et al., 2007; Uchimura et al., 2005; Yeh et al., 2001). The distinct functions of endothelial heparan sulfate in the L-selectin-mediated leukocyte trafficking may be due to the availability of the potent L-selectin ligand 6-sulfo sLeX and sLeX in different recruitment sites.

Decreased cell rolling velocity after removal of heparan sulfate is a surprise considering normal expressions of L-selectin ligands in HEV and of L-selectin in lymphocytes in the mutant mice. Most L-selectin counterreceptors in HEV are mucin glycoproteins containing various numbers of O- and N-glycans (Rosen, 2004), which have a rod-like shape and extend outward from the cell membrane (Coltart et al., 2002; Cyster et al., 1991). An extended form of L-selectin was also shown to enhance the adhesion under shear flow (Phan et al., 2006). In the same context, integrins on lymphocytes change from a bent conformation to an extended conformation after chemokine stimulation, thereby binding the adhesion molecule ICAM-1 on HEV cells (Shamri et al., 2005; Shimaoka et al., 2003). Thus, the adhesion molecules apparently favor the extended form when they interact with counterreceptors on opposing cells (McEver and Zhu, 2010). Heparan sulfate PGs and chondroitin sulfate PGs are also extended molecules from the cell membrane with high negative charge density (Bishop et al., 2007) and may interfere with the interaction of L-selectin with 6-sulfo sLeX in HEV via steric hindrance. It will be of interest to examine whether glycosaminoglycans play a similar inhibitory role in regulating P-selectin- and PSGL-1-mediated cell rolling in peripheral blood vessels.

The firm adhesion of lymphocytes in lymph node HEV requires chemokine-mediated integrin activation. Our study demonstrates the biological importance of HEV heparan sulfate in chemokine immobilization and functional presentation in vivo. The diminished lymphocyte sticking in HEV and reduced lymphocyte homing in mutant mice or HSase-infused mice provides direct evidence for this conclusion and is consistent with a previous report that heparan sulfate regulates the binding of cytokines CXCL1 and CXCL2 to lung microcapillary endothelial cells in vitro (Wang et al., 2005). Thus, HEV heparan sulfate possesses two opposite functions during lymphocyte homing: (1) negative regulation of L-selectin-mediated cell rolling and (2) positive regulation of chemokine-mediated cell sticking, although the latter is the major one.

Our current studies demonstrate that heparan sulfate critically regulates the immobilization of chemokines on lymphatic endothelium and that the binding capacity of lymphatic endothelial cells for CCL19 is about half of that for CCL21. The lower binding capacity for CCL19 is consistent with a report showing a weak binding of CCL19 to heparan sulfate (de Paz et al., 2007): the heparinase treatment of lymphatic endothelium did not remove all the binding capacity of CCL19. As such, CCL19 might bind to other cell surface molecules in addition to heparan sulfate, CCL21 and CCL19 cause random movement and chemotactic movement, respectively, and collaboration of both chemokines is necessary for dendritic cell migration to the lymph node (Schumann et al., 2010). Future studies will be significant to determine whether the gradient of CCL19 is due to the gradient of heparan sulfate expression in the tissue and lymph node.

Our heparan sulfate mutant mice showed a phenotype of reduced homing of lymphocytes and dendritic cells, which is most reminiscent of the phenotype of Ccr7−/− mice (Förster et al., 1999) and CCL21 and CCL19 double-deficient pit/pit mice (Nakano et al., 1998). Our mice also displayed reduced infiltration of both mononuclear cells and neutrophils in contact hypersensitivity assay. The reduced neutrophil infiltration in inflamed ears in the mutant mice was most probably due to an impaired presentation of relevant chemokines such as CXCL2 and impaired endothelial CXCL2 gradient formation required for directed extravasation of neutrophils seen in a heparanase-expressing transgenic mice (Massena et al., 2010). On the other hand, we observed decreased recruitment of lymphocytes but not neutrophils in GlcNAc6ST-1 and -2 double-deficient mice, whereas lymphocyte recruitment to the lymph nodes was only marginally affected in P- and E-selectin double-deficient mice (Staite et al., 1996). The phenotypes of our mutant mice in pathophysiological conditions indicate that endothelial heparan sulfate participates in the recruitment of different types of leukocytes both from the blood circulation into lymph nodes and from inflammatory sites into draining lymph nodes.

Our studies showed that genetic deletion of a major heparan sulfate PG of HEV, syndecan-4, has essentially no effect in lymphocyte homing. This finding is consistent with the reports showing that genetic deletion of one of L-selectin counterreceptors such as GlyCAM-1 had a minimal effect on lymphocyte...
Heparan Sulfate Controls Leukocyte Trafficking

In summary, our results have demonstrated critical functions of endothelial heparan sulfate in the recruitment of lymphocyte and dendritic cells to lymph nodes under both physiological and inflammatory conditions. We thus propose endothelial heparan sulfate as a drug target for attenuating chronic inflammation and inflammatory conditions. We thus propose endothelial heparan sulfate as a drug target for attenuating chronic inflammation and inflammatory conditions. We thus propose endothelial heparan sulfate as a drug target for attenuating chronic inflammation and inflammatory conditions. We thus propose endothelial heparan sulfate as a drug target for attenuating chronic inflammation and inflammatory conditions.

