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a b s t r a c t

Antibody-secreting cells (ASCs) lodging in the mucosa of the small intestine are derived from activated B
cells that are thought to arise in gut-associated lymphoid tissues (GALT). Upon leaving the GALT, B cells
return to the blood where they must express the gut-homing receptors �4�7 and CCR9 in order to emigrate
into the small bowel. Recent evidence indicates that gut-associated dendritic cells (DCs) in GALT induce
gut-homing receptors on B cells via a mechanism that depends on the vitamin A metabolite retinoic acid
(RA). In addition, although ASC associated with other mucosal tissues secrete IgA in an RA-independent
fashion, the presence of high levels of RA in intestine and GALT can promote B cell class switching to IgA
and thus, boost the production of IgA in the intestinal mucosa. Here, we discuss the role of RA in the
imprinting of gut-homing ASC and the evidence linking RA with the generation of intestinal IgA-ASCs.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

IgA is the most abundant immunoglobulin isotype produced in
the body (around 3 g/day) and it is estimated that around 80% of
all IgA-antibody-secreting cells (ASCs) reside in the gut mucosa
[1,2]. Mice either lacking IgA or impaired in its secretion are more
susceptible to intestinal toxins and pathogens [3,4]. In addition,
migration of B cells and ASCs to the gut is critical for conferring
protection against intestinal pathogens [5–9]. Therefore, both IgA
secretion and homing of ASCs to the gut are important in conferring
protection at this anatomical site.

Naïve B lymphocytes migrate to secondary lymphoid organs
(SLOs), such as lymph nodes, Peyer’s patches (PPs) and the spleen,
where they are activated by their cognate antigen [10]. Conven-
tional (B2) B cells can be activated by T cell-dependent (TD)
antigens, i.e., antigens that elicit concomitant “helper” CD4 T cell
responses (usually proteins), and become either ASCs or memory B
cells (BMem) [11]. On the other hand, B cells can also be activated by
T cell-independent (TI) antigens, either type-I (polyclonal activa-
tors, such as LPS, CpG, poly-IC) or type-II (polysaccharides, such as
capsular bacterial polysaccharides) and become mostly short-lived
IgM-ASCs [11].

Peyer’s patches, and to a lesser extent mesenteric lymph nodes
(MLNs), are the main SLOs where B cells differentiate into IgA-
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ASCs [2,12]. As we will discuss below, the preferential induction
of IgA-ASCs in these sites also explain why they acquire pref-
erential migration to the gut [13–15]. Homing of ASCs to the
intestinal mucosa requires the expression of the integrin �4�7
[16,17], which binds to its receptor MAdCAM-1, which is displayed
on intestinal postcapillary endothelial cells [18]. Moreover, in the
case of the small bowel, ASCs also need to express the chemokine
receptor CCR9 in order to migrate efficiently to this compartment
[19–21]. Another chemokine receptor, CCR10, has been proposed
as a “general” mucosal homing receptor [22–25]. In fact, most IgA-
ASCs express CCR10 [24,26] and one of its ligands, the chemokine
CCL28/MEC, is expressed by most mucosal epithelia [23,27]. How-
ever, although CCR10 is apparently necessary for the homing of
ASCs to the colon [21] and the lactating mammary gland [22], its
role in ASC migration to the small bowel remains controversial
[21,28].

Peritoneal B1 B cells can also give rise to intestinal IgA-ASCs,
although the extent of their contribution remains controversial,
ranging from 1 to 50% of all intestinal lamina propria IgA-ASCs,
depending on the experimental system and readout [29–32]. In
addition, it has been described that conventional B1 B cells are not
being found in most mammals (including several mouse strains).
Instead, another B cell subset (Bw B cells) has been described in
most mouse strains [33]. These cells are mostly found in the peri-
toneal cavity and the spleen and they may play an important role in
the production of natural autoantibodies. However, the migratory
properties of this particular B cell subset has not been character-
ized. Moreover, in humans, peritoneal B1 B cells do not seem to
be a significant source of intestinal IgA-ASCs [34]. Thus, the rel-
ative contribution of B1 B cells to the pool of intestinal IgA-ASCs
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and their relevance to gut immunity remain to be determined. It
is also unknown what traffic molecules B1 cells need to home to
the gut mucosa. Interestingly, a recent study showed that the peri-
toneal cavity environment can also imprint gut-homing capacity
and induce IgA class-switching/secretion on plasmablasts [35]. In
this setting, TLR ligands [36] and sphingosine-1-phospate (S1P) [37]
may also play important roles allowing the mobilization of peri-
toneal B1 B cells in order to become intestinal IgA-ASCs. Regarding
the latter, it is important to highlight that S1P and S1P receptor type
1 (S1P1) are also essential for lymphocyte exit from lymphoid com-
partments, such as lymph nodes and PP [38,39]. Consistent with
this notion, S1P is also important for the egress of IgA plasmablasts
from PPs [40].

2. Gut-associated dendritic cells and retinoic acid in the
imprinting of gut-tropic ASCs

It has been shown that oral vaccination induces higher levels
of the gut-homing integrin �4�7 on B cells and ASCs than par-
enteral administration of the same antigen [5,6,41–44]. Thus, the
site of antigen entry into the body determines the microenviron-
ment where B cells are activated, which in turn strongly influences
the homing commitment of the resulting ASCs. In the lymphoid
microenvironment, dendritic cells (DCs) are not only essential for T
cell activation [45,46], but they can also influence B cell responses
by enhancing their differentiation to ASCs and survival [47,48].
Moreover, DCs can present unprocessed antigens to B cells in vivo
[49–51]. Since several reports have shown that DCs from PPs and
MLNs (gut-associated lymphoid tissues (GALT)-DCs) are sufficient
to induce �4�7 and CCR9 and gut-homing capacity on activated T
cells [52–57], it was plausible that they could also modulate B cells
in a tissue-specific manner. In fact, previous data showed that DCs
from PPs, but not from the spleen, promoted IgA class switching in
activated B cells [58,59]. These findings were recently reproduced
and extended to other systems [60–63]. Moreover, similar to their
effect on T cells, it was recently shown that PP-DCs and DCs from
the lamina propria of the small intestine can also imprint �4�7,
CCR9 and gut-homing capacity on ASCs [61,62].

Insights into the mechanism by which gut-associated DCs
imprint gut-homing T cells was provided in a seminal study by
Iwata et al. [64] in which it was shown that the vitamin A metabo-
lite all-trans retinoic acid (RA) is sufficient to induce �4�7 and
CCR9 on activated T cells, and that blocking RA-receptors of the RAR
family decreased the induction of gut-homing receptors by PP-DCs
and MLN-DCs. Consistent with a pivotal role of RA in gut-homing
imprinting, it was shown more recently that RA is also necessary
for the induction of gut-homing receptors on B cells and IgA-ASCs
[61,62] (Fig. 1). These findings provided a molecular explanation for
older observations that vitamin A-deficient rats exhibit impaired
migration of recently activated MLN lymphocytes to the intestinal
mucosa [65], and that these animals had also a marked decrease in
the number of IgA-ASCs and CD4 T cells in their ileum [66].

Of note, subcapsular sinus macrophages can also present lymph-
borne antigens and activate naïve B cells in skin-draining lymph
nodes [67–69]. Since macrophages can secrete BAFF (B-cell acti-
vating factor/Blys) [47] and intestinal lamina propria macrophages
secrete RA [70], it will be interesting to determine whether
subcapsular sinus macrophages in the GALT can also imprint tissue-
specific homing and/or promote specific IgA class switching.

The reason why GALT-DCs and lamina propria DCs can secrete
RA is explained, at least in part, by their selective expression of
retinal dehydrogenases (RALDH), which are critical enzymes for RA
synthesis [62–64,71]. However, other cells in the gut, e.g., intesti-
nal epithelial cells (IEC), also express RALDH and can synthesize
RA [64,72]. Also, extraintestinal sources of RA have been identi-

fied in lungs [73] and liver [74]. However, the role of RA in those
extraintestinal anatomic sites remains to be defined. Of interest, it
has been reported that recently activated B cells (plasmablasts) are
also imprinted with gut-tropism in the peritoneal cavity [35]. It will
be interesting to assess whether this “peritoneal imprinting” also
relies on RA.

Even though CCR10 is expressed on most IgA-ASCs, it
is unknown how this receptor is induced on ASCs in vivo.
1,25(OH)2VD3, the active form of vitamin D, has been reported to
induce CCR10 on ex vivo activated human T cells [75] and ASCs [76].
However, the physiological relevance of 1,25(OH)2VD3 for CCR10
induction is presently unclear. Interestingly, a recent report showed
that CCR10 is induced on murine ASCs upon intra-rectal, but not
oral, immunization [77]. In the latter study it was proposed that
CCR10 upregulation happens in the cecal patches and iliac lymph
node, although the molecular mechanism for the induction of this
receptor remains to be determined [77].

B cells may also exhibit homing plasticity [44]. In fact, they can
be reeducated and acquire or lose gut-homing potential when they
are restimulated with or without RA, respectively [61] (Fig. 1). Sim-
ilar homing malleability has been documented for T cells [56,57].
Given that plasma cells are terminally differentiated cells and do
not divide, it is likely that homing plasticity operates at the level of
BMem when they are reactivated and proliferate to become ASC. In
addition, during a restimulation, and depending on the activation
conditions, B cells may also switch to another immunoglobulin iso-
type. For example, BMem expressing either IgM, IgG or IgE may, in
theory, switch to IgA when reactivated in MALT. In fact, sequential
immunoglobulin switching from IgG2b to IgA or, in humans, from
IgA1 to IgA2, has been described in Ref. [78].

3. Role of gut-associated DCs and RA in the generation of
intestinal IgA-ASCs

The different and complex mechanisms implicated in induc-
ing mucosal IgA-ASCs have been reviewed in detail elsewhere
[10,79–81]. Here we will focus on summarizing and discussing the
evidence linking RA with the generation of IgA-ASCs, which also
establishes a mechanistic link between the imprinting signals for
gut homing and the modulation of B cell effector function.

It had been known for some time that GALT-DCs can induce IgA-
ASCs when cocultured with activated B cells in vitro [58–63], even
in the absence of T cells [61–63]. As mentioned above, RA is synthe-
sized/secreted by GALT-DCs and it is essential for the imprinting of
gut-homing receptors on T and B cells [61,64]. Since RA also induces
IgA secretion in LPS-activated splenocytes [82–87], we tested the
possibility that GALT-DCs may rely on RA for inducing IgA class
switching (Fig. 2). Indeed, we and others recently demonstrated
that the IgA-promoting effect of GALT-DCs or lamina propria DCs is
at least partially dependent on RA [61–63]. The effect of RA on IgA
secretion may be mediated, at least in part, by increased IgA class
switching in RA-exposed B cells [87]. However, the extent to which
RA directly influences class switching [87] or enhances the prolifer-
ation/differentiation of already switched IgA plasmablasts [88,89]
remains to be determined. Nonetheless, consistent with the effect
of RA on IgA secretion in vitro, oral administration of a RA receptor
(RAR)-agonist significantly increases serum IgA levels in rats [90].

RA may also have effects on other immunoglobulin isotypes.
Although vitamin A depletion (hence RA depletion) increases
total serum IgG levels [91,92], antigen-specific IgG1 responses are
decreased [93]. The latter effect probably reflects the impaired
Th2 differentiation observed in the setting of vitamin A deficiency
[94,95] and not a direct effect on B cells. In fact, supplementation
of RA inhibits IgG1 production in vitro and in vivo [82,90,96,97].
Finally, it has been reported that RA also blocks the production of
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Fig. 1. Homing imprinting on B cells and ASC. GALT-DC or all-trans retinoic acid (RA) induce the expression of �4�7 and CCR9 on ASC and probably also on memory B cells
(BMem), endowing them with the capacity to home to the small bowel. In addition, IgA-ASC migrating to all mucosal tissues express CCR10 and the CCR10 ligand MEC/CCL28 is
expressed in all mucosal compartments. However, it is unknown how CCR10 is induced on ASC. Like T cells, B cells also show plasticity regarding their homing commitment.
If nongut-homing B cells are restimulated in the presence of RA, they readily upregulate �4�7 and CCR9. On the other hand, B cells with gut-homing capacity lose �4�7 and
CCR9 if they are reactivated without RA. Since ASC are terminally differentiated and do not divide, it is likely that the capacity to be “reprogrammed” in their homing potential
resides at the level of BMem. Finally, whether homing to the bone marrow or sites of inflammation represents a default pathway in the absence of RA or other mucosal signals
remains to be determined. (+) Agonist/inductive effect. (−) Antagonist/blocking effect. Dashed lines: hypothetical/speculative scenario.

IgE in vitro [98]. However, this IgE-blocking effect was not observed
in vivo [99].

4. The interplay of RA and other DC-derived signals in the
induction of IgA-ASCs

It has been reported previously that either IL-5 or IL-6 can influ-
ence IgA secretion [100–110]. In fact, RA-induced IgA secretion
requires either exogenous IL-5 or the presence of T cells produc-
ing this cytokine [84,96]. Also, RA induces autocrine production of

IL-6 by B cells, which may further contribute to IgA secretion [111].
Moreover, both RA and IL-6 are required for optimal IgA induc-
tion by GALT-DCs in vitro [60,61]. Furthermore, RA plus either IL-5,
IL-6 or LPS synergize and are sufficient to induce IgA secretion by
activated B cells in the presence of non-intestinal DCs [61,62]. How-
ever, IL-5, IL-6 or LPS are probably not directly involved in specific
IgA class switching but are rather permissive for immunoglob-
ulin class switching by inducing activation-induced cytidine
deaminase (AID, an essential enzyme for immunoglobulin class-
switching and somatic hypermutation) [79,112] or by promoting
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Fig. 2. Retinoic acid and induction of IgA-ASC. TGF� is directly involved in IgA class switching and is virtually essential for IgA responses in all mucosal compartments. In the
gut, intestinal epithelial cells (IEC) and GALT-DC are among the potential sources of TGF�. DCs also express the integrin �v�8, which is essential for TGF� activation in vivo.
Gut IgA responses to thymus-independent (TI) antigens require APRIL binding to TACI on B cells. APRIL is produced by IEL upon stimulation by commensal flora or TLR signals.
These stimuli also induce TSLP secretion by IEL, which in turn induces more APRIL expression by GALT-DC. Mucosal DC (including GALT-DC) express the inducible form of
nitric oxide synthase (iNOS), which is also induced by commensal flora and TLR signals. iNOS generates nitric oxide (NO), which is critical for both TD and TI IgA responses.
NO synthesis is necessary for proper TGF-� signaling on B cells and also for APRIL synthesis by GALT-DC. CD40L, APRIL and TLR ligands contribute to IgA class-switching by
upregulating the enzyme activation-induced cytidine deaminase (AID), which is essential for both immunoglobulin class-switching and somatic hypermutation. APRIL and
TLR ligands may also directly contribute to IgA class switching. Vasoactive intestinal peptide (VIP) can also induce IgA class switching in vitro, although its significance in vivo
remains to be determined. RA, which can be synthesized by intestinal epithelial cells (IEC) and GALT-DC, is probably interrelated to some of the IgA inducing mechanism
mentioned above. RA plus IL-5, IL-6, or TLR signals can promote the differentiation of IgA-ASC in the presence of DC. Whether the latter effect represents mainly a direct
effect of RA on IgA class-switching remains to be clarified. RA may also induce IgA class switching indirectly by upregulating TGF-� secretion and iNOS/NO. RA has also been
shown to induce VIP and its receptors in some cell lines. However, whether this is also relevant for DC and/or B cells remains to be defined. It will also be interesting to
determine whether RA can induce the expression of �v�8 on DC. (+) Synthesis, induction or activation. Dashed lines: hypothetical speculative scenario. Questions marks:
unknown mechanism.

proliferation/differentiation of already switched IgA plasmablasts
[10,113].

Since it is well established that TGF� is critical for IgA responses
in vivo [114–117], it is likely that GALT-DCs rely, at least partially,
on TGF� for their IgA-inducing capacity. In fact, GALT-DCs can pro-
duce active TGF� [70,71,118,119] and blocking TGF� decreases the

capacity of PP-DCs to induce IgA-ASCs [63]. Moreover, mucosal
DCs express the integrins �v�6 and �v�8, which play an essen-
tial role in activating latent TGF� (TGF� non-covalently associated
to the latency-associated peptide) in vivo [119–123] (Fig. 2).
Nonetheless, it is possible that GALT-DCs also promote IgA in a
TGF�-independent manner. In fact, blocking TGF� does not com-
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pletely abrogate the capacity of PP-DCs to induce IgA-ASCs [63].
Moreover, although RA also induces TGF� activity in LPS-activated
splenocytes and other cells [82,124,125], the IgA-inducing effect of
RA is only partially dependent on this cytokine [63,82]. These obser-
vations are in line with the notion that while the essential in vivo
role of TGF� in IgA class-switching is well demonstrated, its in vitro
effects on IgA class-switching/secretion seem to vary significantly
depending on the experimental system (this issue is discussed in
detail elsewhere [10]).

Interestingly, the inducible form of nitric oxide synthase (iNOS)
and nitric oxide (NO) play essential roles for both thymus-
dependent and thymus-independent IgA responses [126]. iNOS/NO
seem to be important for the normal expression of TGF-�RII and
Smad proteins (involved in TGF� signal transduction) in B cells as
well as for the production of APRIL (a proliferation-inducing lig-
and) and BAFF by DCs [126] (Fig. 2). Of note, iNOS is expressed
by DCs from small intestinal lamina propria and GALT-DC, but not
by spleen DC, and its expression depends on signals driven by
commensal flora and TLR signals [126], which may contribute to
explaining the lower induction of IgA by GALT-DCs isolated from
germ-free mice [63]. Regarding a potential relationship of iNOS/NO
and RA, the iNOS gene promoter has a RA-response element (RARE)
that is directly activated by RA bound to its nuclear RAR�/RXR
heterodimeric receptor [127,128]. In fact, intraperitoneal admin-
istration of RAR-agonists, including RA, potentiates LPS-induced
iNOS expression in several organs, and also increases plasma lev-
els of nitrate/nitrite in rats [128,129]. Thus, RA may also indirectly
contribute to IgA secretion by inducing iNOS/NO expression.

APRIL and BAFF (which signal through TACI and BCMA on B cells)
can also induce IgA-ASCs, and these factors are important during
thymus-independent B cell responses [10,79]. It has been reported
that the intestinal flora and TLR signals induce BAFF and APRIL in
DCs [78,130]. Therefore, the decreased IgA induction by GALT-DCs
isolated from germ-free mice [63] may be explained, at least in
part, by a reduced production of APRIL and BAFF. In addition, since
iNOS/NO is necessary to induce BAFF and APRIL secretion by GALT-
DC [126], RA may also play an indirect role in APRIL/BAFF-mediated
IgA responses by upregulating iNOS [128,129]. However, it should
be mentioned that PP-DCs can still induce IgA responses on TACI-
and BCMA-deficient B cells when they are activated with either
CD40L or LPS [63]. This is analogous to the IgA induction by TGF-�1
plus LPS, which is also TACI- and BCMA-independent [131]. Thus,
the relative role of APRIL and BAFF in IgA induction will ultimately
depend on the B cell activation context.

Vasoactive intestinal peptide (VIP) can also induce IgA secre-
tion by human activated B cells [132–134]. Interestingly, it has
been reported that RA can induce both VIP and VIP receptors in
a neuroblastoma cell line [135,136]. However, whether RA plays a
role influencing VIP responses on B cells and/or DCs remains to be
determined.

To summarize, RA has a direct IgA-promoting effect on acti-
vated B cells and it also appears to synergize with several other
mechanisms that are thought to promote IgA production in the
gut. Consistent with an important in vivo role of RA in gut IgA
production, rats depleted of vitamin A have decreased levels of
total IgA in intestinal lavages and decreased mucosal antigen-
specific IgA responses [137–141]. Similarly, vitamin A-depleted
mice show impaired IgA secretion and protection at mucosal sites
[92,142], as well as impaired IgA responses to bacterial toxins either
after oral [143] or transcutaneous [144] immunization. However, it
should be kept in mind that vitamin A deficiency may have other
effects on the immune system. In fact, the greater susceptibility
to intestinal infections and toxins observed in vitamin A-deficient
animals may also be explained, at least in part, by a decreased
epithelial expression of the polymeric immunoglobulin receptor

(pIgR) and therefore, a decreased IgA secretion to the intestinal
lumen [137,141,142,145]. Moreover, although vitamin A-deficient
mice have a greatly reduced number of IgA-ASCs in the small
bowel [61,66], they have normal serum IgA levels [61]. This indi-
cates that retinoids are not absolutely required for IgA production
in tissues other than the small intestine. Nonetheless, the critical
role of RA in T and B cell gut-homing imprinting [61,64], as well
as its IgA-ASC promoting potential in the gut [61,82], may con-
tribute to explain the classical epidemiological observation that
vitamin A deficiency is associated with impaired intestinal immune
responses [91,92,143,137–142] and markedly increased mortality in
children in the developing world [146]. It also provides a plausi-
ble mechanism to explain the empirical observation that vitamin A
supplementation decreases diarrhea and mortality in HIV-infected
or malnourished children [147–151].

5. Concluding remarks

It is already well established that gut-associated DCs, includ-
ing DCs from GALT and lamina propria, can strongly influence T
and B cell responses in a tissue-specific manner. Gut-associated
DCs, owing to their selective ability to produce and secrete RA,
imprint gut-homing capacity on both T and B cells. Moreover,
gut-associated DCs can induce B cells to become IgA-ASCs by a
mechanism that is, at least in part, dependent on RA. Thus, gut-
associated DCs and RA modulate intestinal immune responses by
affecting both lymphocyte migration and effector activity.

As discussed above, it is also apparent that RA can potentially
interact with other mechanisms inducing IgA-ASCs, such as TGF�,
iNOS/NO and probably others. However, the overall relevance of
RA for TD and/or TI IgA responses in vivo remains to be defined.
Also, although RA influences the steady-state lymphocyte com-
position/numbers in the gut, it has been recently reported that
during some viral vaccinations gut-homing imprinting and induc-
tion of IgA-ASC may also happen outside the GALT [152]. Thus, it
will be important to determine how essential RA is for lymphocyte
migration during acute immune responses or in various settings of
inflammation.

Finally, it will be important to address how gut-associated DCs
are “educated” to acquire the capacity to synthesize RA and, thus, to
imprint gut-homing lymphocytes and IgA-ASCs. Recent work sug-
gests that commensal flora is necessary to confer GALT-DCs with the
capacity to induce IgA-ASCs. Whether this is also true for imprinting
gut-homing lymphocytes remains to be determined. If so, it will be
interesting to address whether TLR signals and/or commensal bac-
teria are sufficient to confer non-gut DCs or their precursors with
gut imprinting and/or IgA inducing capacity.
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